42 resultados para Differential Inclusions with Constraints
em Publishing Network for Geoscientific
(Table 4) Chemical composition of plagioclase and glass inclusions in ODP Sample 126-792E-74R-1,9-13
Resumo:
Microthermometric and isotopic analyses of fluid inclusions in primitive olivine gabbros, oxide gabbros, and evolved granitic material recovered from Ocean Drilling Program Hole 735B at the Southwest Indian Ridge provide new insights into the evolution of C-O-H-NaCl fluids in the plutonic foundation of the oceanic crust. The variably altered and deformed plutonic rocks span a crustal section of over 1500 m and record a remarkably complex magma-hydrothermal history. Magmatic fluids within this suite followed two chemically distinct paths during cooling through the subsolidus regime: the first path included formation of CO2+CH4+H2O+C fluids with up to 43 mole% CH4; the second path produced hypersaline brines that contain up to 50% NaCl equivalent salinities. Subsequent to devolatilization, respeciation of magmatic CO2, attendant graphite precipitation, and cooling from 800°C to 500°C promoted formation of CH4-enriched fluids. These fluids are characterized by average d13C(CH4) values of -27.1+/-4.3 per mil (N=45) with associated d13C(CO2) compositions ranging from -24.9 per mil to -1.9 per mil (N=39), and average dD values of exsolved vapor of -41+/-12 per mil (N=23). In pods, veins, and lenses of highly fractionated residual material, hypersaline brines formed during condensation and by direct exsolution in the absence of a conjugate vapor phase. Entrapped CO2+CH4+H2O-rich fluids within many oxide-bearing rocks and felsic zones are significantly depleted in 13C (with d13C(CO2) values down to about -25 per mil) and contain CO2 concentrations higher than those predicted by equilibrium devolatilization models. We hypothesize that lower effective pressures in high-temperature shear zones promoted infiltration of highly fractionated melts and compositionally evolved volatiles into focused zones of deformation, significantly weakening the rock strength. In felsic-rich zones, volatile build-up may have driven hydraulic fracturing of gabbroic wall rocks resulting in the formation of magmatic breccias. Comparison of isotopic compositions of fluids in plutonic rocks from 735B, the MARK area of the Mid-Atlantic Ridge, and the Mid-Cayman Rise indicate (1) that the carbon isotope composition of the lower oceanic crust may be far more heterogeneous than previously believed and (2) that carbon-bearing species in the oceanic crust and their distribution at depth are highly variable.
Resumo:
The chemical composition of glass inclusions in phenocrystic plagioclase and pyroxene from Sites 792 and 793, drilled during Ocean Drilling Program Leg 126 in the Bonin Arc, is examined. Immiscible liquid, which is preserved as glass inclusions with unmixed textures in plagioclase, is observed in a high-magnesian andesite, which suggests an important role of liquid immiscibility in the fractionation of high-magnesian andesite. In other andesitic rocks (SiO2 = 57-60 wt%), such unmixed textures of glass inclusions in calcic plagioclase with a similar percentage of An (around 80%) is not found. The degree of fractionation and mixing of liquid are inferred from the glass composition in pyroxene.
Resumo:
We report S concentrations and relative proportions of (SO4)2- and S2- in OL- and CPX-hosted glass inclusions and in host glassy lapilli from Miocene basaltic hyaloclastites drilled north and south of Gran Canaria during ODP Leg 157. Compositions of glass inclusions and lapilli resemble those of subaerial Miocene shield basalts on Gran Canaria and comprise mafic to more evolved tholeiitic to alkali basalt and basanite (10.3-3.7 wt.% MgO, 44.5-56.9 wt.% SiO2). Glass inclusions fall into three groups based on their S concentrations: a high-sulfur group (1050 to 5810 ppm S), an intermediate-sulfur group (510 to 1740 ppm S), and a low-sulfur group (<500 ppm S). The most S-rich inclusions have the highest and nearly constant proportion of sulfur dissolved as sulfate determined by electron microprobe measurements of SKa peak shift. Their average S6+/S_total value is 0.75+/-0.09, unusually high for ocean island basalt magmas. The low-sulfur group inclusions have low S6+/S_total ratios (0.08+/-0.05), whereas intermediate sulfur group inclusions show a wide range of S6+/S_total (0.05-0.83). Glassy lapilli and their crystal-hosted glass inclusions with S concentrations of 50 to 1140 ppm S have very similar S6+/S_total ratios of 0.36+/-0.06 implying that sulfur degassing does not affect the proportion of (SO4)2- and S2- in the magma. The oxygen fugacities estimated from S6+/S_total ratios and from Fe3+/Fe2+ ratios in spinel inclusions range from NNO-1.1 to NNO+1.8. The origin of S-rich magmas is unclear. We discuss (1) partial melting of a mantle source at relatively oxidized fO2 conditions, and (2) magma contamination by seawater either directly or through magma interaction with seawater-altered Jurassic oceanic crust. The intermediate sulfur group inclusions represent undegassed or slightly degassed magmas similar to submarine OIB glasses, whereas the low-sulfur group inclusions are likely to have formed from magmas significantly degassed in near-surface reservoirs. Mixing of these degassed magmas with stored volatile-rich ones or volatile-rich magma replenishing the chamber filled by partially degassed magmas may produce hybrid melts with strongly varying S concentrations and S6+/S_total ratios.
Resumo:
A comprehensive (mineralogical, geochronological, and geochemical) study of zircons from an eclogitized gabbronorite dike was carried out in order to identify reliable indicators (mineralogical and geochronological) of genesis of the zircons in their various populations and, correspondingly, ages of certain geological events (magmatic crystallization of the gabbroids, their eclogitization, and overprinted retrograde metamorphism). Three populations of zircons separated from two rock samples comprised xenogenic, magmatic (gabbroic), and metamorphic zircons, with the latter found exclusively in the sample of retrograded eclogitized gabbroids. Group I zircons are xenogenic and have a Meso- to Neoarchean age. Mineral inclusions in them (quartz, apatite, biotite, and chlorite) are atypical of gabbroids, and geochemistry of these zircons is very diverse. Group II zircons contain mineral inclusions of ortho- and clinopyroxene and are distinguished for their very high U, Th, Pb, and REE concentrations and Th/U ratios. These zircons formed during the late magmatic crystallization of the gabbroids at temperatures of 1150-1160°C, and their U-Pb age 2389±25 Ma corresponds to this process. Eclogite mineral assemblages crystallized shortly after the magmatic process, as follows from the fact that marginal portions of prismatic zircons contain clinopyroxene inclusions with elevated contents of the jadeite end-member. Group III zircons contain rare amphibole and biotite inclusions and have low Ti, Y, and REE concentrations, low Th/U ratios, high Hf concentrations, contain more HREE than LREE, and have U-Pb age 1911±9.5 Ma, which corresponds to age of overprinted amphibolite-facies metamorphism.
Resumo:
Melt inclusions in olivine and plagioclase phenocrysts from rocks (magnesian basalt, basaltic andesite, andesite, ignimbrite, and dacite) of various age from the Gorely volcanic center, southern Kamchatka, were studied by means of their homogenization and by analyzing the glasses in 100 melt inclusions on an electron microprobe and 24 inclusions on an ion probe. The SiO2 concentrations of the melts vary within a broad range of 45-74 wt%, as also are the concentrations of other major components. According to their SiO2, Na2O, K2O, TiO2, and P2O5 concentrations, the melts are classified into seven groups. The mafic melts (45-53 wt% SiO2) comprise the following varieties: potassic (on average 4.2 wt% K2O, 1.7 wt% Na2O, 1.0 wt% TiO2, and 0.20 wt% P2O5), sodic (3.2% Na2O, 1.1% K2O, 1.1% TiO2, and 0.40% P2O5), and titaniferous with high P2O5 concentrations (2.2% TiO2, 1.1% P2O5, 3.8% Na2O, and 3.0% K2O). The melts of intermediate composition (53-64% SiO2) also include potassic (5.6% K2O, 3.4% Na2O, 1.0% TiO2, and 0.4% P2O5) and sodic (4.3% Na2O, 2.8% K2O, 1.3% TiO2, and 0.4% P2O5) varieties. The acid melts (64-74% SiO2) are either potassic (4.5% K2O, 3.6% Na2O, 0.7% TiO2, and 0.15% P2O5) or sodic (4.5% Na2O, 3.1% K2O, 0.7% TiO2, and 0.13% P2O5). A distinctive feature of the Gorely volcanic center is the pervasive occurrence of K-rich compositions throughout the whole compositional range (silicity) of the melts. Melt inclusions of various types were sometimes found not only in a single sample but also in the same phenocrysts. The sodic and potassic types of the melts contain different Cl and F concentrations: the sodic melts are richer in Cl, whereas the potassic melts are enriched in F. We are the first to discover potassic melts with very high F concentrations (up to 2.7 wt%, 1.19 wt% on average, 17 analyses) in the Kuriles and Kamchatka. The average F concentration in the sodic melts is 0.16 wt% (37 analyses). The melts are distinguished for their richness in various groups of trace elements: LILE, REE (particularly HREE), and HFSE (except Nb). All of the melts share certain geochemical features. The concentrations of elements systematically increase from the mafic to acid melts (except only for the Sr and Eu concentrations, because of active plagioclase fractionation, and Ti, an element contained in ore minerals). The paper presents a review of literature data on volcanic rocks in the Kurile-Kamchatka area in which melt inclusions with high K2O concentrations (K2O/Na2O > 1) were found. K-rich melts are proved to be extremely widespread in the area and were found on such volcanoes as Avachinskii, Bezymyannyi, Bol'shoi Semyachek, Dikii Greben', Karymskii, Kekuknaiskii, Kudryavyi, and Shiveluch and in the Valaginskii and Tumrok Ranges.
Resumo:
Core and outcrop analysis from Lena mouth deposits have been used to reconstruct the Late Quaternary sedimentation history of the Lena Delta. Sediment properties (heavy mineral composition, grain size characteristics, organic carbon content) and age determinations (14C AMS and IR-OSL) are applied to discriminate the main sedimentary units of the three major geomorphic terraces, which form the delta. The development of the terraces is controlled by complex interactions among the following four factors: (1) Channel migration. According to the distribution of 14C and IR-OSL age determinations of Lena mouth sediments, the major river runoff direction shifted from the west during marine isotope stages 5-3 (third terrace deposits) towards the northwest during marine isotope stage 2 and transition to stage 1 (second terrace), to the northeast and east during the Holocene (first terrace deposits). (2) Eustasy. Sea level rise from Last Glacial lowstand to the modern sea level position, reached at 6-5 ka BP, resulted in back-filling and flooding of the palaeovalleys. (3) Neotectonics. The extension of the Arctic Mid-Ocean Ridge into the Laptev Sea shelf acted as a halfgraben, showing dilatation movements with different subsidence rates. From the continent side, differential neotectonics with uplift and transpression in the Siberian coast ridges are active. Both likely have influenced river behavior by providing sites for preservation, with uplift, in particular, allowing accumulation of deposits in the second terrace in the western sector. The actual delta setting comprises only the eastern sector of the Lena Delta. (4) Peat formation. Polygenetic formation of ice-rich peaty sand (''Ice Complex'') was most extensive (7-11 m in thickness) in the southern part of the delta area between 43 and 14 ka BP (third terrace deposits). In recent times, alluvial peat (5-6 m in thickness) is accumulated on top of the deltaic sequences in the eastern sector (first terrace).
Resumo:
Basaltic rocks recovered at the Middle America Trench area off Mexico are typical plagioclase-olivine phyric abyssal tholeiites containing less than 0.2 wt.% K2O. Phenocrysts of plagioclase and olivine usually make up the aggregate. Plagioclase phenocrysts are Ca-rich and up to An90. Olivine phenocrysts, which are always attached to plagioclase phenocrysts, are magnesian, Fo88 to Fo89, and contain 0.2 to 0.3 wt. % of NiO. Plagioclase phenocrysts contain numerous glass inclusions with the Mg/Mg+Fe atomic ratio of 0.70 to 0.73, which is distinctly higher than the same ratio of the bulk rock (0.62-0.63). Olivine of Fo88 to Fo89 is equilibrated with the liquid with an Mg/Mg+Fe atomic ratio of about 0.7, assuming the KDMg-Fe between liquid and olivine of 0.3. Small droplets of glass within glass inclusions in plagioclase are more enriched in K2O and volatiles than the host glass. This enrichment may have been caused by the extraction of Al2O3 as plagioclase from the trapped liquid and implies its immiscibility. Aggregates of plagioclase with small amounts of olivine may have been floated from more primitive magma with an Mg/Mg+Fe atomic ratio of about 0.7, judging from the chemical characteristics mentioned above. Flotation must have occurred at relatively high pressure. Large crystals of plagioclase and smaller crystals of olivine are xenocryst rather than phenocryst. Parental magma of Leg 66 basalt was high-MgO olivine tholeiite.
Resumo:
A dynamic crystallization study was undertaken to provide a framework for linking the textural variations observed in the Hole 648B lavas with the size and morphology of cooling units inferred from drilling and submersible observation. The textures produced in cooling rate experiments carried out using a Serocki lava (ALV-1690-20) are comparable to the groundmass textural characteristics of lavas from Serocki volcano. The results of the dynamic crystallization study provide a quantitative link between texture, cooling rate, and eruption temperature. The maximum half-width of cooling units estimated from textural characteristics is on the order of 3 m, a value consistent with constraints from drilling and submersible observation. Textural characteristics indicate that the temperature from which cooling began was slightly above the liquidus. The relation between cooling rate and texture are also tested on a drill core sample of basalt of similar composition from a 9-m-thick flow in DSDP Hole 396B.
Resumo:
Changes of glaciers and snow cover in polar regions affect a wide range of physical and ecosystem processes on land and in the adjacent marine environment. In this study, we investigate the potential of 11-day repeat high-resolution satellite image time series from the TerraSAR-X mission to derive glaciological and hydrological parameters on King George Island, Antarctica during the period Oct/25/2010 to Apr/19/2011. The spatial pattern and temporal evolution of snow cover extent on ice-free areas can be monitored using multi-temporal coherence images. SAR coherence is used to map glacier extent of land terminating glaciers with an average accuracy of 25 m. Multi-temporal SAR color composites identify the position of the late summer snow line at about 220 m above sea level. Glacier surface velocities are obtained from intensity feature-tracking. Surface velocities near the calving front of Fourcade Glacier were up to 1.8 ± 0.01 m/d. Using an intercept theorem based on fundamental geometric principles together with differential GPS field measurements, the ice discharge of Fourcade Glacier was estimated to 20700 ± 5500 m**3/d (corresponding to ~19 ± 5 kt/d). The rapidly changing surface conditions on King George Island and the lack of high-resolution digital elevation models for the region remain restrictions for the applicability of SAR data and the precision of derived products.