24 resultados para Different temperatures

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to determine shifts in the microbial community structure and potential function based on standard Integrated Ocean Drilling Program (IODP) storage procedures for sediment cores. Standard long-term storage protocols maintain sediment temperature at 4°C for mineralogy, geochemical, and/or geotechnical analysis whereas standard microbiological sampling immediately preserves sediments at -80°C. Storage at 4°C does not take into account populations may remain active over geologic time scales at temperatures similar to storage conditions. Identification of active populations within the stored core would suggest geochemical and geophysical conditions within the core change over time. To test this potential, the metabolically active fraction of the total microbial community was characterized from IODP Expedition 325 Great Barrier Reef sediment cores prior to and following a 3-month storage period. Total RNA was extracted from complementary 2, 20, and 40 m below sea floor sediment samples, reverse transcribed to complementary DNA and then sequenced using 454 FLX sequencing technology, yielding over 14,800 sequences from the six samples. Interestingly, 97.3% of the sequences detected were associated with lineages that changed in detection frequency during the storage period including key biogeochemically relevant lineages associated with nitrogen, iron, and sulfur cycling. These lineages have the potential to permanently alter the physical and chemical characteristics of the sediment promoting misleading conclusions about the in situ biogeochemical environment. In addition, the detection of new lineages after storage increases the potential for a wider range of viable lineages within the subsurface that may be underestimated during standard community characterizations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter discusses the formation and distribution of some metals in ocean-floor manganese nodules in the light of the observed data in the literature and thermodynamic and kinetic considerations of the oxidation of metal ions in the oceanic environment. There are, in general, two major schools of thought on the mechanism of incorporation of the minor elements such as nickel, copper, and cobalt with the major elements such as manganese and iron. One is the lattice substitution mechanism and the other the adsorption mechanism. If the mechanism is lattice substitution, extraction of the metal ions is not possible unless the lattice of the major elements is first broken and exchanged with other ions from the bulk solution. Consequently, the leaching behavior of minor elements should display a very close relationship with that of major elements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Antarctic terrestrial ecosystems have poorly developed soils and currently experience one of the greatest rates of climate warming on the globe. We investigated the responsiveness of organic matter decomposition in Maritime Antarctic terrestrial ecosystems to climate change, using two study sites in the Antarctic Peninsula region (Anchorage Island, 67°S; Signy Island, 61°S), and contrasted the responses found with those at the cool temperate Falkland Islands (52°S). Our approach consisted of two complementary methods: (1) Laboratory measurements of decomposition at different temperatures (2, 6 and 10 °C) of plant material and soil organic matter from all three locations. (2) Field measurements at all three locations on the decomposition of soil organic matter, plant material and cellulose, both under natural conditions and under experimental warming (about 0.8 °C) achieved using open top chambers. Higher temperatures led to higher organic matter breakdown in the laboratory studies, indicating that decomposition in Maritime Antarctic terrestrial ecosystems is likely to increase with increasing soil temperatures. However, both laboratory and field studies showed that decomposition was more strongly influenced by local substratum characteristics (especially soil N availability) and plant functional type composition than by large-scale temperature differences. The very small responsiveness of organic matter decomposition in the field (experimental temperature increase <1 °C) compared with the laboratory (experimental increases of 4 or 8 °C) shows that substantial warming is required before significant effects can be detected.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We studied polar and temperate samples of the lichen Cetraria aculeata to investigate whether genetical differences between photobionts are correlated with physiological properties of the lichen holobiont. Net photosynthesis and dark respiration (DR) at different temperatures (from 0 to 30 °C) and photon flux densities (from 0 to 1,200 ?mol/m**2/s) were studied for four populations of Cetraria aculeata. Samples were collected from maritime Antarctica, Svalbard, Germany and Spain, representing different climatic situations. Sequencing of the photobiont showed that the investigated samples fall in the polar and temperate clade described in Fernández-Mendoza et al. (2011, doi:10.1111/j.1365-294X.2010.04993.x). Lichens with photobionts from these clades differ in their temperature optimum for photosynthesis, maximal net photosynthesis, maximal DR and chlorophyll content. Maximal net photosynthesis was much lower in Antarctica and Svalbard than in Germany and Spain. The difference was smaller when rates were expressed by chlorophyll content. The same is true for the temperature optima of polar (11 °C) and temperate (15 and 17 °C) lichens. Our results indicate that lichen mycobionts may adapt or acclimate to local environmental conditions either by selecting algae from regional pools or by regulating algal cell numbers (chlorophyll content) within the thallus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this paper is to analyze and compare mineralogy and geochemistry of copper-zinc sulfide ores from the Logachev-2 and Rainbow hydrothermal fields of the Mid-Atlantic Ridge (MAR) confined to serpentinite protrusions. It was found that Zn(Fe) and Cu, Fe(Zn) sulfides had been deposited in black smokers pipes almost simultaneously from intermittently flowing, nonequilibrium H2S-low solutions of different temperatures. Pb isotope composition confirmed that the deep oceanic crust had been a source of lead. The ores from the Rainbow field are 20-fold higher in Co than ores restricted to basalts and show a high ratio of Co/Ni=46. The ores from the Rainbow field are enriched in 34S isotope (aver. d34S=10 per mil) because of constant flow of cold sea water into the subsurface zone of the hydrothermal system. Ores from the Logachev-2 field are 8 times higher in gold compared to other MAR regions. Sulfide ores from the Rainbow and Logachev-2 fields have no analogues among MAR ore occurrences in terms of enrichment in valuable components (Zn, Cd, Co, and Au).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An incubation experiment at five different temperatures was used to assess the potential for adaptation of Calanus finmarchicus to future warming of the ocean. During a short term (3 h) and long term (6 day) exposure of individual females to a gradient of temperature stress, egg production and fecal pellet production were monitored to indicate secondary production and grazing rates. A longer term (10 day) exposure to elevated temperatures followed by a return to ambient sea temperatures was used to assess the potential recovery of individuals exposed to temperature stress. Females were picked out from WP2 net samples and acclimatised in 2 L bottles of GFF filtered seawater with Thalassiosira weissflogii as prey for >48 h at ambient SST. Experimental bottles were filled with filtered seawater (GFF filtered from non-toxic seawater supply) and acclimated to experimental temperature overnight (0, 5, 10, 15 and 20 °C). Individual females were transferred into bottles using forceps and the bottles were inoculated with T. weissflogii to a final concentration of 5 µg chl L-1. Bottles were then placed into water baths and incubated for 3h or 6 d, and monitored for egg and fecal pellet production rates. A 10 day exposure experiment was used to test the potential for recovery from temperature stress, by returning females incubated at 5, 10, 15 and 20 °C back to 10 °C for 24 h and counting egg and fecal pellet production.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A comprehensive experimental study, utilizing a rocking autoclave hydrothermal apparatus with isotope tracers, was applied to evaluate the temperature of squeezing artifacts on B contents and isotopic compositions in pore waters. The partition coefficient (KD) was determined at temperatures from 25 ° to 350 °C, at 800 bars, and this information was applied to reconstruct pore water B and d11B in ODP drill sites, where pH, T, and porosity are known. The partition coefficient of B is a function of temperature, pH, and sediment mineralogy. The solution pH exerts a dominant control at low temperatures; however, KD decreases to a value of essentially zero (compared to that of KD = ~3.5 at 25 °C) at high temperatures indicating no adsorption. Two empirical equations were derived to represent most of the available experimental results. For pelagic clay rich sediments, a KD = -3.84-0.020T + 0.88pH (R = 0.84; 1sigma = 0.25) is established. For sediments that have experienced progressive metamorphism, a KD = -1.38-0.008T + 0.59pH (R = 0.81; 1sigma = 0.37) can be applied. Similarly the effect on pore water d11B can be corrected if the fractionation factors at different temperatures are assumed. The corrected B and d11B in ODP Sites 671, 672, and 808 indicate significant mobilization of bulk B in sediment (exchangeable + lattice bound) at depth, especially near the décollement zone or other potential flow conduits. Tectonically expelled fluids from mud diapirs of Barbados Ridge Complex, hot springs of Rumsey Hills, California, and mud pot waters of the Salton Sea geothermal field, are enriched in B (up to 20 mM) with lower d11B, supporting the argument of B mobilization as a result of fluid expulsion in accretionary prisms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hypercapnia and elevated temperatures resulting from climate change may have adverse consequences for many marine organisms. While diverse physiological and ecological effects have been identified, changes in those molecular mechanisms, which shape the physiological phenotype of a species and limit its capacity to compensate, remain poorly understood. Here, we use global gene expression profiling through RNA-Sequencing to study the transcriptional responses to ocean acidification and warming in gills of the boreal spider crab Hyas araneus exposed medium-term (10 weeks) to intermediate (1,120 µatm) and high (1,960 µatm) PCO2 at different temperatures (5°C and 10°C). The analyses reveal shifts in steady state gene expression from control to intermediate and from intermediate to high CO2 exposures. At 5°C acid-base, energy metabolism and stress response related genes were upregulated at intermediate PCO2, whereas high PCO2 induced a relative reduction in expression to levels closer to controls. A similar pattern was found at elevated temperature (10°C). There was a strong coordination between acid-base, metabolic and stress-related processes. Hemolymph parameters at intermediate PCO2 indicate enhanced capacity in acid-base compensation potentially supported by upregulation of a V-ATPase. The likely enhanced energy demand might be met by the upregulation of the electron transport system (ETS), but may lead to increased oxidative stress reflected in upregulated antioxidant defense transcripts. These mechanisms were attenuated by high PCO2, possibly as a result of limited acid-base compensation and metabolic down-regulation. Our findings indicate a PCO2 dependent threshold beyond which compensation by acclimation fails progressively. They also indicate a limited ability of this stenoecious crustacean to compensate for the effects of ocean acidification with and without concomitant warming.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coralline algae are considered among the most sensitive species to near future ocean acidification. We tested the effects of elevated pCO2 on the metabolism of the free-living coralline alga Lithothamnion corallioides ("maerl") and the interactions with changes in temperature. Specimens were collected in North Brittany (France) and grown for 3 months at pCO2 of 380 (ambient pCO2), 550, 750, and 1000 µatm (elevated pCO2) and at successive temperatures of 10°C (ambient temperature in winter), 16°C (ambient temperature in summer), and 19°C (ambient temperature in summer +3°C). At each temperature, gross primary production, respiration (oxygen flux), and calcification (alkalinity flux) rates were assessed in the light and dark. Pigments were determined by HPLC. Chl a, carotene, and zeaxanthin were the three major pigments found in L. corallioides thalli. Elevated pCO2 did not affect pigment content while temperature slightly decreased zeaxanthin and carotene content at 10°C. Gross production was not affected by temperature but was significantly affected by pCO2 with an increase between 380 and 550 µatm. Light, dark, and diel (24 h) calcification rates strongly decreased with increasing pCO2 regardless of the temperature. Although elevated pCO2 only slightly affected gross production in L. corallioides, diel net calcification was reduced by up to 80% under the 1,000 µatm treatment. Our findings suggested that near future levels of CO2 will have profound consequences for carbon and carbonate budgets in rhodolith beds and for the sustainability of these habitats.