10 resultados para Diagnoses-Related Groups (DRG)
em Publishing Network for Geoscientific
Resumo:
In an earlier paper by two of the authors the conclusion was reached that the 33 recognized species of oxides of Mn could be separated into 3 groups: 1) those which appeared to be persistently supergene in origin, 2) those which appeared to be persistently hypogene, and 3) those which were supergene in some localities and hypogene in other localities. When that paper was written, there were available about 250 X-ray diffraction analyses of mineral specimens, also 35 complete and about 150 partial chemical analyses. The conclusions of that paper were based upon the interpretation of the geologic conditions under which these specimens occurred. Late in the preparation of that paper, it seemed worthwhile to make numerous semiquantitative analyses of specimens, largely from 9 western [U.S.A] states, selected carefully from 5 groups of geologic environments, in the hope that the frequency and percentages of some elements might be distinctive of the several geologic groups. For this purpose, 95 specimens were selected from the 5 groups, as follows: 19 specimens interpreted as supergene oxides by the geologists who collected them, 35 specimens of hypogene vein oxides, 22 specimens of Mn-bearing hot spring aprons, 9 specimens of stratified oxides, and 10 specimens of deep-sea nodules. The spectrographic analyses here recorded indicate that a group of elements - W, Ba, Sr, Be, As, Sb, Tl, and Ge - are present more commonly, and largely in higher percentages, in the hypogene oxide than in the supergene oxides and thus serve to indicate different sources of the Mn. Also, the frequency and percentages of some of these elements indicate a genetic relation of the manganese oxides in hypogene veins, hot spring aprons, and stratified deposits. The analyses indicate a declining percentage of some elements from depth to the surface in these 3 related groups and increasing percentages of some other elements. It is concluded that some of the elements in deep-sea nodules indicate that sources other than rocks decomposed on the continents, probably vulcanism on the floors of the seas, have contributed to their formation.
Resumo:
Anaerobic methane-oxidizing microbial communities in sediments at cold methane seeps are important factors in controlling methane emission to the ocean and atmosphere. Here, we investigated the distribution and carbon isotopic signature of specific biomarkers derived from anaerobic methanotrophic archaea (ANME groups) and sulphate-reducing bacteria (SRB) responsible for the anaerobic oxidation of methane (AOM) at different cold seep provinces of Hydrate Ridge, Cascadia margin. The special focus was on their relation to in situ cell abundances and methane turnover. In general, maxima in biomarker abundances and minima in carbon isotope signatures correlated with maxima in AOM and sulphate reduction as well as with consortium biomass. We found ANME-2a/DSS aggregates associated with high abundances of sn-2,3-di-O-isoprenoidal glycerol ethers (archaeol, sn-2-hydroxyarchaeol) and specific bacterial fatty acids (C16:1omega5c, cyC17:0omega5,6) as well as with high methane fluxes (Beggiatoa site). The low to medium flux site (Calyptogena field) was dominated by ANME-2c/DSS aggregates and contained less of both compound classes but more of AOM-related glycerol dialkyl glycerol tetraethers (GDGTs). ANME-1 archaea dominated deeper sediment horizons at the Calyptogena field where sn-1,2-di-O-alkyl glycerol ethers (DAGEs), archaeol, methyl-branched fatty acids (ai-C15:0, i-C16:0, ai-C17:0), and diagnostic GDGTs were prevailing. AOM-specific bacterial and archaeal biomarkers in these sediment strata generally revealed very similar d13C-values of around -100 per mill. In ANME-2-dominated sediment sections, archaeal biomarkers were even more 13C-depleted (down to -120 per mill), whereas bacterial biomarkers were found to be likewise 13C-depleted as in ANME-1-dominated sediment layers (d13C: -100 per mill). The zero flux site (Acharax field), containing only a few numbers of ANME-2/DSS aggregates, however, provided no specific biomarker pattern. Deeper sediment sections (below 20 cm sediment depth) from Beggiatoa covered areas which included solid layers of methane gas hydrates contained ANME-2/DSS typical biomarkers showing subsurface peaks combined with negative shifts in carbon isotopic compositions. The maxima were detected just above the hydrate layers, indicating that methane stored in the hydrates may be available for the microbial community. The observed variations in biomarker abundances and 13C-depletions are indicative of multiple environmental and physiological factors selecting for different AOM consortia (ANME-2a/DSS, ANME-2c/DSS, ANME-1) along horizontal and vertical gradients of cold seep settings.
Resumo:
Detrital modes for 524 deep-marine sand and sandstone samples recovered on circum-Pacific, Caribbean, and Mediterranean legs of the Deep Sea Drilling Project and the Ocean Drilling Program form the basis for an actualistic model for arc-related provenance. This model refines the Dickinson and Suczek (1979) and Dickinson and others (1983) models and can be used to interpret the provenance/tectonic history of ancient arc-related sedimentary sequences. Four provenance groups are defined using QFL, QmKP, LmLvLs, and LvfLvmiLvl ternary plots of site means: (1) intraoceanic arc and remnant arc, (2) continental arc, (3) triple junction, and (4) strike-slip-continental arc. Intraoceanic- and remnant-arc sands are poor in quartz (mean QFL%Q < 5) and rich in lithics (QFL%L > 75); they are predominantly composed of plagioclase feldspar and volcanic lithic fragments. Continental-arc sand can be more quartzofeldspathic than the intraoceanic- and remnant-arc sand (mean QFL%Q values as much as 10, mean QFL%F values as much as 65, and mean QmKP%Qm as much as 20) and has more variable lithic populations, with minor metamorphic and sedimentary components. The triple-junction and strike-slip-continental groups compositionally overlap; both are more quartzofeldspathic than the other groups and show highly variable lithic proportions, but the strike-slip-continental group is more quartzose. Modal compositions of the triple junction group roughly correlate with the QFL transitional-arc field of Dickinson and others (1983), whereas the strike-slip-continental group approximately correlates with their dissected-arc field.
Resumo:
Data on relative contents of principal diatom groups in suspended matter collected by a separator on the way of the ship and in bottom sediments from different areas of the Indian Ocean are presented in the paper.
Resumo:
This study focuses on mafic volcanic rocks from the Bouvet triple junction, which fall into six geochemically distinct groups: (1) N-MORB, the most widespread type, encountered throughout the study area. (2) Subalkaline volcanics, hawaiites and mugearites strongly enriched in lithophile elements and radiogenic isotopes and composing the Bouvet volcanic rise, and compositionally similar basalts and basaltic andesites from the Spiess Ridge, generated in a deeper, fertile mantle region. (3) Relatively weakly enriched basalts, T-MORB derived by the mixing of Type 1 and 2 melts and exposed near the axes of the Mid-Atlantic, Southwest Indian, and America-Antarctic Ridges. (4) Basalts with a degree of trace lithophile element enrichment similar to the Spiess Ridge and Bouvet Island rocks, but higher in K, P, Ti, and Cr. These occur within extensional structures: the rift valley of the Southwest Indian Ridge, grabens of the East Dislocation Zone, and the linear rise between the Spiess Ridge and Bouvet volcano. Their parental melts presumably separated from plume material that spread from the main channels and underwent fluid-involving differentiation in the mantle. (5) A volcanic suite ranging from basalt to rhyolite, characterized by low concentrations of lithophile elements, particularly TiO2, and occurring on the Shona Seamount and other compressional features within the Antarctic and South American plates near the Bouvet triple junction. Unlike Types 1 to 4, which display tholeiitic differentiation trends, this suite is calc-alkaline. Its parental melts were presumably related to the plume material as well but, subsequently, they underwent a profound differentiation involving fluids and assimilated surrounding rocks in closed magma chambers in the upper mantle. Alternatively, the Shona Seamount might be a fragment of an ancient oceanic island arc. (6) Enriched basalts, distinguished from the other enriched rock types in very high P and radiogenic isotope abundances and composing a tectonic uplift near the junction of the three rifts. It thus follows that the main factors responsible for the compositional diversity of volcanic rocks in this region include (i) mantle source heterogeneity, (ii) plume activity, (iii) an intricate geodynamic setup at the triple junction giving rise to stresses in adjacent plate areas, and (iv) the geological prehistory. The slow spreading rate and ensuing inefficient mixing of the heterogeneous mantle material result in strong spatial variations in basaltic compositions.
Resumo:
Three dives of the Mir manned submersibles with plankton counts and two vertical plankton hauls with a BR net were carried out above the Lost City (Atlantis underwater massif) and the Broken Spur hydrothermal fields during cruise 50 of R/V Akademik Mstislav Keldysh. Above the Atlantis seamount no significant increase in plankton concentration was found. Above the Lost City field horizontal heterogeneity of plankton distribution in the near-bottom layer and in overlying water layers was shown. Near-bottom aggregations of euphausiids and amphipods previously reported by other scientists seem to be related to attraction of these animals by the submersible's headlights rather than represent a natural phenomenon.
Resumo:
The metabolic rate of organisms may either be viewed as a basic property from which other vital rates and many ecological patterns emerge and that follows a universal allometric mass scaling law; or it may be considered a property of the organism that emerges as a result of the organism's adaptation to the environment, with consequently less universal mass scaling properties. Data on body mass, maximum ingestion and clearance rates, respiration rates and maximum growth rates of animals living in the ocean epipelagic were compiled from the literature, mainly from original papers but also from previous compilations by other authors. Data were read from tables or digitized from graphs. Only measurements made on individuals of know size, or groups of individuals of similar and known size were included. We show that clearance and respiration rates have life-form-dependent allometries that have similar scaling but different elevations, such that the mass-specific rates converge on a rather narrow size-independent range. In contrast, ingestion and growth rates follow a near-universal taxa-independent ~3/4 mass scaling power law. We argue that the declining mass-specific clearance rates with size within taxa is related to the inherent decrease in feeding efficiency of any particular feeding mode. The transitions between feeding mode and simultaneous transitions in clearance and respiration rates may then represent adaptations to the food environment and be the result of the optimization of tradeoffs that allow sufficient feeding and growth rates to balance mortality.
Resumo:
The pulsed decline and eventual extinction of 51 species of elongate, cylindrical deep-sea benthic foraminifera (Stilostomellidae, Pleurostomellidae, and some Nodosariidae) occurred at intermediate water depths (1145-2168 m, Sites 980 and 982) in the northern North Atlantic during the mid-Pleistocene transition (MPT, 1.2-0.6 Ma). In the early Pleistocene, prior to their disappearance, these species comprised up to 20% of the total abundance of the benthic foraminiferal assemblage at 2168 m, but up to only 2% at 1145 m. The MPT extinction of 51 species represents ?20% of the total benthic foraminiferal diversity at bathyal depths in the North Atlantic (excluding the myriad of small unilocular forms). The extinction rate during the MPT was approximately 10 species per 0.1 myr, being one or two orders of magnitude greater than normal background turnover rates of deep-sea benthic foraminifera. Comparison of the precise timings of declines and disappearances (= highest occurrences) of each species shows that they were often diachronous between the two depths. The last of these species to disappear in the North Atlantic was Pleurostomella alternans at ~0.679 and ~0.694 Ma in Sites 980 and 982, respectively, which is in good agreement with the previously documented global "Stilostomella extinction" datum within the period 0.7-0.58 Ma. Comparison with similar studies in intermediate depth waters in the Southwest Pacific Gateway indicates that ~61% of the extinct species were common to both regions, and that although the pattern of pulsed decline was similar, the precise order and timing of the extinction of individual species were mostly different on opposite sides of the world. Previous studies have indicated that this extinct group of elongate, cylindrical foraminifera lived infaunally and had their greatest abundances in poorly ventilated, lower oxygen environments. This is supported by our study where there is a strong positive correlation (r = ~+ 0.8) between the flux of the extinction group and low-oxygen/high organic input species (such as Uvigerina, Bulimina and Bolivina) during the MPT, suggesting a close relationship with lower oxygen levels and high food supply to the sea floor. The absolute abundance, flux, and number of the extinction group of species show a progressive withdrawal pattern with major decreases occurring in cold periods with high d13C values. This might be related to increasing chemical ventilation of glacial intermediate water.
Resumo:
The continental shelf adjacent to the Río de la Plata (RdlP) exhibits extremely complex hydrographic and ecological characteristics which are of great socioeconomic importance. Since the long-term environmental variations related to the atmospheric (wind fields), hydrologic (freshwater plume), and oceanographic (currents and fronts) regimes are little known, the aim of this study is to reconstruct the changes in the terrigenous input into the inner continental shelf during the late Holocene period (associated with the RdlP sediment discharge) and to unravel the climatic forcing mechanisms behind them. To achieve this, we retrieved a 10 m long sediment core from the RdlP mud depocenter at 57 m water depth (GeoB 13813-4). The radiocarbon age control indicated an extremely high sedimentation rate of 0.8 cm per year, encompassing the past 1200 years (AD 750-2000). We used element ratios (Ti / Ca, Fe / Ca, Ti / Al, Fe / K) as regional proxies for the fluvial input signal and the variations in relative abundance of salinity-indicative diatom groups (freshwater versus marine-brackish) to assess the variability in terrigenous freshwater and sediment discharges. Ti / Ca, Fe / Ca, Ti / Al, Fe / K and the freshwater diatom group showed the lowest values between AD 850 and 1300, while the highest values occurred between AD 1300 and 1850. The variations in the sedimentary record can be attributed to the Medieval Climatic Anomaly (MCA) and the Little Ice Age (LIA), both of which had a significant impact on rainfall and wind patterns over the region. During the MCA, a weakening of the South American summer monsoon system (SAMS) and the South Atlantic Convergence Zone (SACZ), could explain the lowest element ratios (indicative of a lower terrigenous input) and a marine-dominated diatom record, both indicative of a reduced RdlP freshwater plume. In contrast, during the LIA, a strengthening of SAMS and SACZ may have led to an expansion of the RdlP river plume to the far north, as indicated by higher element ratios and a marked freshwater diatom signal. Furthermore, a possible multidecadal oscillation probably associated with Atlantic Multidecadal Oscillation (AMO) since AD 1300 reflects the variability in both the SAMS and SACZ systems.