3 resultados para Dgs
em Publishing Network for Geoscientific
Resumo:
The De Gerlache Seamounts are two topographic highs in the Bellingshausen Sea, southeastern Pacific. Petrological and geochemical studies together with K-Ar age determinations were carried out on four dredged basalt samples collected during a RV Polarstern expedition (ANT-XII/4) in 1995. Minor and trace element composition suggest alkaline basalt compositions. Compared to alkaline basalts of adjacent West Antarctica (the Jones Mountains) and of Peter I Island, the samples have lower mg-numbers, lower Ni and Cr contents and lower high field-strength elements (HFSE)/Nb and large-ion lithophile elements (LILE)/HFSE ratios. Three of the four samples have low K, Rb, and Cs concentrations relative to alkaline basalts. The K-depletion and other elemental concentrations may be explained by 1.1% melting of amphibole bearing mantle material. Additionally, low Rb and Ba values suggest low concentrations of these elements in the mantle source. K-Ar age determinations yield Miocene ages (20-23 Ma) that are similar in age to other alkaline basalts of West Antarctica (Thurston Island, the Jones Mountains, Antarctic Peninsula) and the suggested timing of onset of Peter I Island volcanism (~10-20 Ma). The occurrence of the DGS and Peter I Island volcanism along an older but reactivated tectonic lineation suggests that the extrusions exploited a zone of pre-existing lithospheric weakness. The alkaline nature and age of the DGS basalts support the assumption of plume activity in the Bellingshausen Sea.
Resumo:
Surface samples, mostly from abyssal sediments of the South Atlantic, from parts of the equatorial Atlantic, and of the Antarctic Ocean, were investigated for clay content and clay mineral composition. Maps of relative clay mineral content were compiled, which improve previous maps by showing more details, especially at high latitudes. Large-scale relations regarding the origin and transport paths of detrital clay are revealed. High smectite concentrations are observed in abyssal regions, primarily derived from southernmost South America and from minor sources in Southwest Africa. Near submarine volcanoes of the Antarctic Ocean (South Sandwich, Bouvet Island) smectite contents exhibit distinct maxima, which is ascribed to the weathering of altered basalts and volcanic glasses. The illite distribution can be subdivided into five major zones including two maxima revealing both South African and Antarctic sources. A particularly high amount of Mg- and Fe-rich illites are observed close to East Antarctica. They are derived from biotite-bearing crystalline rocks and transported to the west by the East Antarctic Coastal Current. Chiorite and well-crystallized dioctaedral illite are typical minerals enriched within the Subantarctic and Polarfrontal-Zone but of minor importance off East Antarctica. Kaolinite dominates the clay mineral assemblage at low latitudes, where the continental source rocks (West Africa, Brazil) are mainly affected by intensive chemical weathering. Surprisingly, a slight increase of kaolinite is observed in the Enderby Basin and near the Filchner-Ronne Ice shelf. The investigated area can be subdivided into ten, large-scale clay facies zones with characteristic possible source regions and transport paths. Clay mineral assemblages of the largest part of the South Atlantic, especially of the western basins are dominated by chlorite and illite derived from the Antarctic Peninsula and southernmost South America and supported by advection within the Circumantarctic Deep Water flow. In contrast, the East Antarctic provinces are relatively small. Assemblages of the eastern basins north of 30°S are strongly influenced by African sources, controlled by weathering regimes on land and by a complex interaction of wind, river and deep ocean transport. The strong gradient in clay mineral composition at the Brazilian slope indicate a relatively low contribution of tropically derived assemblages to the western basins.