10 resultados para Desgrange, Michel, 1734-1822, (in religion, Père Archange)
em Publishing Network for Geoscientific
Resumo:
The Athabasca Basin (Canada) contains the highest grade unconformity-type uranium deposits in the world. Underlying the Athabasca Group sedimentary rocks of the Dufferin Lake zone are variably graphitic pelitic schists (VGPS), altered to chlorite and hematite (Red/Green Zone: RGZ), and locally bleached near the unconformity during paleoweathering and/or later fluid interaction, leading to a loss of graphite near the unconformity. Fluid inclusions were examined in different generations of quartz veins, using microthermometry and Raman analysis, to characterize and compare the different fluids that interacted with the RGZ and the VGPS. In the VGPS, CH4-, N2- and CO2-rich fluids circulated. CH4- and N2-rich fluids could be the result of the breakdown of graphite to CH4/CO2, whereas N2-rich fluid is interpreted to be the result of breakdown of feldspars/micas to NH4+/N2. In the RGZ, highly saline fluids interpreted to be basinally derived have been recorded. The circulation of the two types of fluids (carbonic and brines) occurred at two different distinct events: 1) during the retrograde metamorphism of the basement rocks before the deposition of the Athabasca Basin for the carbonic fluids, and 2) after the deposition of the Athabasca Basin for the brines. Thus, in addition to possibly be related to graphite depletion in the RGZ, the brines can be linked to uranium mineralization.
Resumo:
Maestrichtian to Holocene calcareous nannofossils from two closely spaced sites on the upper continental rise some 100 miles (161 km) southeast of Atlantic City, New Jersey, were zoned in order to help date a major canyon-cutting event in the late Miocene and to delineate and correlate other hiatuses with seismic stratigraphy. Mid-middle Eocene through middle Miocene sediments (Zones CP14 to CN6) were not recovered in these holes, but nearly all other zones are accounted for. The Eocene section is described in a companion chapter (Applegate and Wise, 1987, doi:10.2973/dsdp.proc.93.118.1987). Nannofossils are generally sparse and moderately preserved in the clastic sediments of Site 604. Sedimentation rates are extremely high for the upper Pleistocene (201 m/m.y. minimum) above a hiatus calculated to span 0.44 to 1.1 Ma. The associated disconformity is correlated with local seismic reflection Horizon Pr . Sedimentation rates continue to be high (93 m/m.y.) down to a second hiatus in the upper Pliocene dated from about 2.4 to 2.9 (or possibly 3.3) Ma. The disconformity associated with this hiatus is correlated with local seismic reflection Horizon P2 and regional Reflector Blue, which can be interpreted to mark either the onset of Northern Hemisphere continental glaciation or circulation changes associated with the closure of the Central American Seaway. Sedimentation rates in the pre-glacial lower Pliocene are only about a third those in the glacial upper Pliocene. A prominent disconformity in the upper Miocene marks a major lithologic boundary that separates Messinian(?) glauconitic claystones above from lower Tortonian conglomeratic debris flows and turbidites below. The debris flows recovered are assigned to nannofossil Zones CN8a and CN7, but drilling difficulties prevented penetration of the bottom of this sequence some 100 m below the terminal depth of the hole. Correlation of the lower bounding seismic reflector (M2/Merlin?) to a drift sequence drilled on the lower rise at DSDP Site 603, however, predicts that the debris flows began close to the beginning of the late Miocene (upper Zone CN6 time) at about 10.5 Ma. The debris flows represent a major canyon-cutting event that we correlate with the beginning of the particularly severe late Miocene glaciations believed to be associated with the formation of the West Antarctic Ice Sheet. The existence of these spectacular debris flows strongly suggest that the late Miocene glacio-eustatic low stand occurred during Vail Cycle TM3.1 (lower Tortonian) rather than during Vail Cycle TM3.2 (Messinian) as originally published. Beneath a set of coalesced regional disconformities centered upon seismic reflection Horizon Au, coccoliths are abundant and in general are moderately preserved at Site 605 in a 619-m carbonate section extending from the middle Eocene Zone CP13b to the upper Maestrichtian Lithraphidites quadratus Zone. Sedimentation rates are 37 m/m.y. in the Eocene down to a condensed interval near the base (Zone CP9). A disconformity is suspected near the Eocene/Paleocene boundary. Sedimentation rates for the upper Paleocene Zone CP8 are similar to those of the Eocene, but Zones CP7 and CP6 lie within another condensed interval. The highest Paleocene rates are 67 m/m.y. down through Zones CP5 and CP4 to a major disconformity that separates the upper Paleocene from the Danian. This hiatus spans about 2.6 m.y. (upper Zone CP3 to lower Zone CP2) and corresponds to the major sea-level drop at the base of Vail Cycle TE2.1. As the most prominent break in this Paleogene section, it may correspond to seismic reflection Horizon A* of the North American Basin. Sedimentation rates from this point to the Cretaceous/Tertiary boundary drop to 11 m/m.y., still high for a Paleocene DSDP section. No major break in deposition could be detected at the Cretaceous/Tertiary boundary.
Resumo:
Records of the past neodymium (Nd) isotope composition of the deep ocean can resolve ambiguities in the interpretation of other tracers. We present the first Nd isotope data for sedimentary benthic foraminifera. Comparison of the epsilon-Nd of core-top foraminifera from a depth transect on the Cape Basin side of the Walvis Ridge to published seawater data, and to the modern dissolved SiO2- epsilon-Nd trend of the deep Atlantic, suggests that benthic foraminifera represent a reliable archive of the deep water Nd isotope composition. Neodymium isotope values of benthic foraminifera from ODP Site 1264A (Angola Basin side of the Walvis Ridge) from the last 8 Ma agree with Fe-Mn oxide coatings from the same samples and are also broadly consistent with existing fish teeth data for the deep South Atlantic, yielding confidence in the preservation of the marine Nd isotope signal in all these archives. The marine origin of the Nd in the coatings is confirmed by their marine Sr isotope values. These important results allow application of the technique to down-core samples. The new epsilon-Nd datasets, along with ancillary Cd/Ca and Nd/Ca ratios from the same foraminiferal samples, are interpreted in the context of debates on the Neogene history of North Atlantic Deep Water (NADW) export to the South Atlantic. In general, the epsilon-Nd and delta13C records are closely correlated over the past 4.5 Ma. The Nd isotope data suggest strong NADW export from 8 to 5 Ma, consistent with one interpretation of published delta13C gradients. Where the epsilon-Nd record differs from the nutrient-based records, changes in the pre-formed delta13C or Cd/Ca of southern-derived deep water might account for the difference. Maximum NADW-export for the entire record is suggested by all proxies at 3.5-4 Ma. Chemical conditions from 3 to 1 Ma are totally different, showing, on average, the lowest NADW export of the record. Modern-day values again imply NADW export that is about as strong as at any stage over the past 8 Ma.
Resumo:
Research so far has provided little evidence that benthic biogeochemical cycling is affected by ocean acidification under realistic climate change scenarios. We measured nutrient exchange and sediment community oxygen consumption (SCOC) rates to estimate nitrification in natural coastal permeable and fine sandy sediments under pre-phytoplankton bloom and bloom conditions. Ocean acidification, as mimicked in the laboratory by a realistic pH decrease of 0.3, significantly reduced SCOC on average by 60% and benthic nitrification rates on average by 94% in both sediment types in February (pre-bloom period), but not in April (bloom period). No changes in macrofauna functional community (density, structural and functional diversity) were observed between ambient and acidified conditions, suggesting that changes in benthic biogeochemical cycling were predominantly mediated by changes in the activity of the microbial community during the short-term incubations (14 days), rather than by changes in engineering effects of bioturbating and bio-irrigating macrofauna. As benthic nitrification makes up the gross of ocean nitrification, a slowdown of this nitrogen cycling pathway in both permeable and fine sediments in winter, could therefore have global impacts on coupled nitrification-denitrification and hence eventually on pelagic nutrient availability.
Resumo:
Stable isotopic records across the Cretaceous/Paleogene (K/P) boundary in Maud Rise Holes 689B and 690C indicate that significant climatic changes occurred during the latest Cretaceous, beginning approximately 500 k.y. prior to the mass extinction event and the enrichment of iridium at the K/P boundary (66.4 Ma). An oxygen isotopic decrease of ~0.7 per mil - ~1.0 per mil is recorded in the Late Cretaceous planktonic and benthic foraminifers between 66.9 and 66.6 Ma. The negative isotope excursion was followed by a positive excursion of similar magnitude between 66.6 Ma (latest Cretaceous) and ~66.3 Ma (earliest Paleocene). No other isotopic excursions of this magnitude are recorded in the planktonic and benthic microfossil records 1.0 m.y prior to, and for 2.0 m.y following the mass extinction event at the K/P boundary. The magnitude and duration of these isotopic excursions were similar to those at the Paleocene/Eocene and Eocene/Oligocene boundaries. A major d13C excursion occurred 200 k.y. prior to the boundary, involving a positive shift in planktonic and benthic d13C of ~0.5 per mil - 0.75 per mil. Similar changes observed in other deep-sea sequences indicate that this reflected a global change in d13C of the oceanic total dissolved carbon (TDC) reservoir. The magnitude of this inferred carbon reservoir change and its association with high latitude surface-water temperature changes recorded in the d18O records implies that it was linked to global climate change through feedback loops in the carbon cycle. At the K/P boundary, the surface-to-deep water d13C gradient is reduced by approximately 0.6 per mil - ~0.2 per mil. However, unlike sequences elsewhere, the planktonic-benthic d13C gradient (Delta d13C) was not eliminated in the Antarctic. The surface-to-deep water gradient was re-established gradually during the 400 k.y. following the mass extinction. Full recovery of the Delta d13C occurred by ~60.0 Ma. In addition to the reduced vertical d13C gradient across the K/P boundary, there was a negative excursion in both planktonic and benthic d13C beginning approximately 100 k.y. after the boundary (66.3 Ma). This excursion resulted in benthic d13C values in the early Paleogene that were similar to those in the pre-K/P boundary intervals. This negative shift appears to reflect a change in the d13C of the oceanic TDC reservoir shift that may have resulted from reduced carbon burial and/or increased carbon flux to the oceans. Any model that attempts to explain the demise of the oceanic plankton at the end of the Cretaceous should consider the oceanic environmental changes that were occurring prior to the massive extinction event.
Resumo:
In 2001, a weather and climate monitoring network was established along the temperature and aridity gradient between the sub-humid Moroccan High Atlas Mountains and the former end lake of the Middle Drâa in a pre-Saharan environment. The highest Automated Weather Stations (AWS) was installed just below the M'Goun summit at 3850 m, the lowest station Lac Iriki was at 450 m. This network of 13 AWS stations was funded and maintained by the German IMPETUS (BMBF Grant 01LW06001A, North Rhine-Westphalia Grant 313-21200200) project and since 2011 five stations were further maintained by the GERMAN DFG Fennec project (FI 786/3-1), this way some stations of the AWS network provided data for almost 12 years from 2001-2012. Standard meteorological variables such as temperature, humidity, and wind were measured at an altitude of 2 m above ground. Other meteorological variables comprise precipitation, station pressure, solar irradiance, soil temperature at different depths and for high mountain station snow water equivalent. The stations produced data summaries for 5-minute-precipitation-data, 10- or 15-minute-data and a daily summary of all other variables. This network is a unique resource of multi-year weather data in the remote semi-arid to arid mountain region of the Saharan flank of the Atlas Mountains. The network is described in Schulz et al. (2010) and its further continuation until 2012 is briefly discussed in Redl et al. (2015, doi:10.1175/MWR-D-15-0223.1) and Redl et al. (2016, doi:10.1002/2015JD024443).
Resumo:
The effects of temperature and food availability on feeding and egg production of the Arctic copepod Calanus hyperboreus were investigated in Disko Bay, western Greenland, from winter to spring 2009. The abundance of females in the near bottom layer and the egg production of C. hyperboreus prior to the spring bloom document that reproduction relies on lipid stores. The maximum in situ egg production (± SE) of 54 ± 8 eggs female/d was recorded in mid-February at chlorophyll a concentrations below 0.1 µg/l, whereas no egg production was observed in mid-April when the spring bloom developed. After reproduction, the females migrated to the surface layer to exploit the bloom and refill their lipid stores. In 2 laboratory experiments, initiated before and during the spring bloom, mature females were kept with and without food at 5 different temperatures ranging from 0 to 10°C and the fecal pellet and egg production were monitored. Food had a clear effect on fecal pellet production but no effect on egg production, while temperature did not have an effect on egg or fecal pellet production in any of the experiments. Analyses of carbon and lipid content of the females before and after the experiments did not reflect any effect of food or temperature in the pre-bloom experiment, whereas in the bloom experiment a clear positive effect of food was detected in female biochemical profiles. The lack of a temperature response suggests a future warmer ocean could be unfavorable for C. hyperboreus compared to smaller Calanus spp. which are reported to exploit minor temperature elevations for increased egg production.