56 resultados para Descriptions
em Publishing Network for Geoscientific
Resumo:
Calcite in the cavities and veins of igneous rocks has long been recognized as an alteration by-product (Dana, 1892). Elementary mineralogy textbooks report that the most common occurrence of aragonite is in the cavities of basalts and andesites (e.g., Kerr, 1977). Therefore, it is not surprising to find both carbonate minerals in association with the moderately to extensively altered basalt flows recovered during deep sea drilling on Suiko Seamount in the Emperor Seamount chain (DSDP Leg 55, Hole 433C). The thickness and vesicularity of the flows, along with the presence of oxidized flow tops, indicate that the basalt erupted subaerially (Site 433 Report, 1980). The stable isotopic contents of the carbonate phases filling and lining the veins and vesicles denote the environment of alteration. An isotopic study was undertaken to secure supportive evidence for a subaerial period in the development of the seamount. Also, the subsequent alteration history after submergence may be interpreted from this isotopic record.
Resumo:
Sediments from immediately above basalt basement and from between sections of basalt recovered from Deep Sea Drilling Project Legs 5 and 63 were analyzed by atomic absorption spectroscopy for Mg, Al, Si, Ca, Mn, Fe, Co, Ni, Cu, Zn, and Ba. All of these sediments showed enrichment in Fe and Mn over values typical of detritus supplied to the northeastern Pacific Ocean. X-ray diffractometry and differential chemical leaching indicate that up to 50% of the sediment, by weight, is in amorphous phases and that these phases are rich in Mn, Co, Cu, Ni, and Zn. Multivariate statistical analysis and normative partitioning of the chemical data indicate that much of the excess Fe and other transition elements in the sediment originate from hydrothermal sources.
Resumo:
This study investigates the landscape evolution and soil development in the loess area near Regensburg between approximately 6000-2000 yr BP (radiocarbon years), Eastern Bavaria. The focus is on the question how man and climate influenced landscape evolution and what their relative significance was. The theoretical background concerning the factors that controlled prehistoric soil erosion in Middle Europe is summarized with respect to rainfall intensity and distribution, pedogenesis, Pleistocene relief, and prehistoric farming. Colluvial deposits , flood loams, and soils were studied at ten different and representative sites that served as archives of their respective palaeoenvironments. Geomorphological, sedimentological, and pedological methods were applied. According to the findings presented here, there was a high asynchronity of landscape evolution in the investigation area, which was due to prehistoric land-use patterns. Prehistoric land use and settlement caused highly difIerenciated phases of morphodynamic activity and stability in time and space. These are documented at the single catenas ofeach site. In general, Pleistocene relief was substantially lowered. At the same time smaller landforms such as dells and minor asymmetric valleys filled up and strongly transformed. However, there were short phases at many sites, forming short lived linear erosion features ('Runsen'), resulting from exceptional rainfalls. These forms are results of single events without showing regional trends. Generally, the onset of the sedimentation of colluvial deposits took place much earlier (usually 3500 yr BP (radiocarbon) and younger) than the formation of flood loams. Thus, the deposition of flood loams in the Kleine Laaber river valley started mainly as a consequence of iron age farming only at around 2500 yr BP (radiocarbon). A cascade system explains the different ages of colluvial deposits and flood loams: as a result of prehistoric land use, dells and other minor Pleistocene landforms were filled with colluvial sediments. After the filling of these primary sediment traps , eroded material was transported into flood plains, thus forming flood loams. But at the moment we cannot quantify the extent ofprehistoric soil erosion in the investigation area. The three factors that controlled the prehistoric Iandscapc evolution in the Ioess area near Regensburg are as follows: 1. The transformation from a natural to a prehistoric cultural landscape was the most important factor: A landscape with stable relief was changed into a highly morphodynamic one with soil erosion as the dominant process of this change. 2. The sediment traps of the pre-anthropogenic relief determined where the material originated from soil erosion was deposited: either sedimentation took place on the slopes or the filled sediment traps of the slopes rendered flood loam formation possible. Climatic influence of any importance can only be documented as the result of land use in connection with singular and/or statistic events of heavy rainfalls. Without human impact, no significant change in the Holocene landscape would have been possible.
Resumo:
Organic matter contents of black shales from the Cretaceous Hatteras and Blake-Bahama formations have been compared to those from surrounding organic-poor strata using C/N ratios, d13C values, and distributions of extractable and nonsolvent-extractable, long-chain hydrocarbons, acids, and alcohols. The proportion of marine and land-derived organic matter varies considerably among all samples, although terrigenous components generally dominate. Most black shales are hydrocarbon-poor relative to their organic-carbon concentrations. Deposition of the black shales in Hole 603B evidently occurred through turbiditic relocation from shallower landward sites and rapid reburial at this outer continental rise location under generally oxygenated bottom-water conditions.
Resumo:
Organic matter in sediments from Sites 515, 516, and 517 reflects a history of low marine productivity and of oxygenated bottom waters in the western South Atlantic since the Pliocene. Organic carbon contents are low, averaging 0.26% of sediment weight. Distributions of n-alkanes, n-alkanols, and n-alkanoic acids show evidence of microbial reworking, and n-alkanes contain important terrigenous contributions, presumably of eolian origin.
Resumo:
Distributions of free and bound n-alkanes, n-alkanoic acids, and n-alkanols were determined in order to compare the character of organic matter contained in organic-carbon-rich sediments from two sites sampled by the hydraulic piston corer. Two diatomaceous debris-flow samples of Pleistocene age were obtained from Hole 530B in the Angola Basin. A sample of bioturbated Pleistocene diatomaceous clay and another of bioturbated late Miocene nannofossil clay were collected from Hole 532 on the Walvis Ridge. Geolipid distributions of all samples contain large terrigenous contributions and lesser amounts of marine components. Similarities in organic matter contents of Hole 530B and Hole 532 sediments suggest that a common depositional setting, probably on the Walvis Ridge, was the original source of these sediments through Quaternary, and possibly late Neogene, times and that downslope relocation of these biogenic deposits has frequently occurred.
Resumo:
Mineralogical and oxygen isotopic analyses of samples from Deep Sea Drilling Project Sites 477, 481, and 477 in the Guaymas Basin indicate the existence of two distinct hydrothermal systems. In the first, at Sites 481 and 478, hot dolerite sills intruded into highly porous hemipelagic siliceous mudstones that were moderately rich in organic matter, thermally altered the adjacent sediments, and expelled hydrothermal pore fluids. The second, at Site 477 and active at present, is most probably caused by a recent igneous intrusion forming a magma chamber at shallow depth. In the first hydrothermal system, the main thermal reactions above and below the sills are dissolution of opal-A and formation of quartz, either directly or through opal-CT; formation of smectite; formation of analcime only above the sills; dissolution and recrystallization of calcite and occasional formation of dolomite or protodolomite. The d18O values of the hydrothermally altered sediments range from 9.9 to 12.2 per mil (SMOW). The d18O values of recrystallized calcites above the first sill complex, Site 481, indicate temperatures of 140° to 170°C. No fluid recharge is required in this system. The thickness of the sill complexes and the sequence and depth of intrusion into the sediment column determine the thickness of the alteration zones, which ranges from 2 or 3 to approximately 50 meters. Generally, the hydrothermally altered zone is thicker above than below the sill. In the second type, the sediments are extensively recrystallized. The characteristic greenschist-facies mineral assemblage of quartz-albite-chlorite-epidote predominates. Considerable amounts of pyrite, pyrrhotite, and sphene are also present. The lowest d18O value of the greenschist facies rocks is 6.6 per mil, and the highest d18O value of the associated pore fluids is +1.38 per mil (SMOW). The paragenesis and the oxygen isotopes of individual phases indicate alteration temperatures of 300 ± 50°C. On the basis of the oxygen isotopes of the solids and associated fluids, it is concluded that recharge of fluids is required. The water/rock ratio in wt.% is moderate, approximately 2/1 to 3/1 - higher than the calculated water/rock ratio of the hydrothermal system at the East Pacific Rise, 21 °N.