14 resultados para Deltas.

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stable isotope analysis was performed on the structural carbonate of fish bone apatite from early and early middle Eocene samples (~55 to ~45 Ma) recently recovered from the Lomonosov Ridge by Integrated Ocean Drilling Program Expedition 302 (the Arctic Coring Expedition). The d18O values of the Eocene samples ranged from -6.84 per mil to -2.96 per mil Vienna Peedee belemnite, with a mean value of -4.89 per mil, compared to 2.77 per mil for a Miocene sample in the overlying section. An average salinity of 21 to 25 per mil was calculated for the Eocene Arctic, compared to 35 per mil for the Miocene, with lower salinities during the Paleocene Eocene thermal maximum, the Azolla event at ~48.7 Ma, and a third previously unidentified event at ~47.6 Ma. At the Azolla event, where the organic carbon content of the sediment reaches a maximum, a positive d13C excursion was observed, indicating unusually high productivity in the surface waters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrocarbon seeps are ubiquitous at gas-prone Cenozoic deltas such as the Nile Deep Sea Fan (NDSF) where seepage into the bottom water has been observed at several mud volcanoes (MVs) including North Alex MV (NAMV). Here we investigated the sources of hydrocarbon gases and sedimentary organic matter together with biomarkers of microbial activity at four locations of NAMV to constrain how venting at the seafloor relates to the generation of hydrocarbon gases in deeper sediments. At the centre, high upward flux of hot (70 °C) hydrocarbon-rich fluids is indicated by an absence of biomarkers of Anaerobic Oxidation of Methane (AOM) and nearly constant methane (CH4) concentration depth-profile. The presence of lipids of incompatible thermal maturities points to mixing between early-mature petroleum and immature organic matter, indicating that shallow mud has been mobilized by the influx of deep-sourced hydrocarbon-rich fluids. Methane is enriched in the heavier isotopes, with values of d13C ~-46.6 per mil VPDB and dD ~-228 per mil VSMOW, and is associated with high amounts of heavier homologues (C2+) suggesting a co-genetic origin with the petroleum. On the contrary at the periphery, a lower but sustained CH4 flux is indicated by deeper sulphate-methane transition zones and the presence of 13C-depleted biomarkers of AOM, consistent with predominantly immature organic matter. Values of d13C-CH4 ~-60 per mil VPDB and decreased concentrations of 13C-enriched C2+ are typical of mixed microbial CH4 and biodegraded thermogenic gas from Plio-Pleistocene reservoirs of the region. The maturity of gas condensate migrated from pre-Miocene sources into Miocene reservoirs of the Western NDSF is higher than that of the gas vented at the centre of NAMV, supporting the hypothesis that it is rather released from the degradation of oil in Neogene reservoirs. Combined with the finding of hot pore water and petroleum at the centre, our results suggest that clay mineral dehydration of Neogene sediments, which takes place posterior to reservoir filling, may contribute to intense gas generation at high sedimentation rate deltas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Lena River Delta, which is the largest delta in the Arctic, extends over an area of 32 000 km**2 and likely holds more than half of the entire soil organic carbon (SOC) mass stored in the seven major deltas in the northern permafrost regions. The geomorphic units of the Lena River Delta which were formed by true deltaic sedimentation processes are a Holocene river terrace and the active floodplains. Their mean SOC stocks for the upper 1 m of soils were estimated at 29 kg/m**2 ± 10 kg/m**2 and at 14 kg/m**2 ± 7 kg/m**2, respectively. For the depth of 1 m, the total SOC pool of the Holocene river terrace was estimated at 121 Tg ± 43 Tg, and the SOC pool of the active floodplains was estimated at 120 Tg ± 66 Tg. The mass of SOC stored within the observed seasonally thawed active layer was estimated at about 127 Tg assuming an average maximum active layer depth of 50 cm. The SOC mass which is stored in the perennially frozen ground at the increment 50-100 cm soil depth, which is currently excluded from intense biogeochemical exchange with the atmosphere, was estimated at 113 Tg. The mean nitrogen (N) stocks for the upper 1 m of soils were estimated at 1.2 kg/m**2 ± 0.4 kg/m**2 for the Holocene river terrace and at 0.9 kg/m**2 ± 0.4 kg/m**2 for the active floodplain levels, respectively. For the depth of 1 m, the total N pool of the river terrace was estimated at 4.8 Tg ± 1.5 Tg, and the total N pool of the floodplains was estimated at 7.7 Tg ± 3.6 Tg. Considering the projections for deepening of the seasonally thawed active layer up to 120 cm in the Lena River Delta region within the 21st century, these large carbon and nitrogen stocks could become increasingly available for decomposition and mineralization processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Results of investigations of Baikal bottom sediments from a long core (BDP-97) and several short (0-1 m) cores are presented. It can be shown that Holocene sediments in the Baikal basins consist of biogenic-terrigenous muds accumulated under still sedimentation conditions, and of turbidites formed during catastrophic events. The turbidites can be distinguished from the host sediments by their enrichment in heavy minerals and thus their high magnetic susceptibility. Often, Pliocene and Pleistocene diatom species observed in the Holocene sediments (mainly in the turbidites) point to redeposition of ancient offshore sediments. Our results indicate that deltas, littoral zones, and continental slopes are source areas of turbidites. The fact that the turbidites occur far from their sources confirms existence of high-energy turbidity currents responsible for long-distance lateral-sediment transport to the deep basins of the lake.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Manganese-iron oxide concretions are presently forming on Patrick Sill in upper Jervis Inlet. The marine geology of Patrick Sill and the adjoining basins (Queen's Reach and Princess Royal Reach) was studied to define the environment in which the concretions form. The river at the inlet head is the principal source of sediment to the upper basin. The average grain size of surficial bottom sediments within this basin decreases uniformly with distance from the source. Patrick Sill separates the upper from the lower basin. The sediment distribution pattern within the lower basin differs markedly from the upper basin as there is no dominant source of material but rather many localized sources. Abundant shallow marine faunal remains recovered in deep water sediment samples indicate that sediments deposited as deltas off river and stream mouths periodically slump to the basin floors. Geologic and optical turbidity information for the upper basin can best be explained by slumping from the delta at the inlet head with the initiation of turbidity or density currents. Patrick Sill appears to create a downstream barrier to this flow. The mineralogy of the bottom sediments indicates derivation from a granitic terrain. If this is so, the sediments presently being deposited in both basins are reworked glacial materials initially derived by glacial action outside the present watershed. Upper Jervis Inlet is mapped as lying within a roof pendant of pre-batholithic rocks, principally slates. Patrick Sill is thought to be a bedrock feature mantled with Pleistocene glacial material. The accumulation rate of recent sediments on the sill is low especially in the V-notch or medial depression. The manganese-iron oxide concretions are forming within the depression and apparently nowhere else in the study area. Also forming within the depression are crusts of iron oxide and what are tentatively identified as glauconite-montmorillonoid pellets. The concretions are thought to form by precipitation of manganese-iron oxides on pebbles and cobbles lying at the sediment water interface. The oxide materials are mobile in the reducing environment of the underlying clayey-sand sediment but precipitate on contact with the oxygenating environment of the surficial sediments. The iron crusts are thought to be forming on extensive rocky surfaces above the sediment water interface. The overall appearance and evidence of rapid formation of the crusts suggests they formed from a gel in sea water. Reserves of manganese-iron concretions on Patrick Sill were estimated to be 117 metric tons. Other deposits of concretions have recently been found in other inlets and in the Strait of Georgia but, to date, the extent of these has not been determined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The environment of ebb-tidal deltas between barrier island systems is characterized by a complex morphology with ebb- and flood-dominated channels, shoals and swash bars connecting the ebb-tidal delta platform to the adjacent island. These morphological features reveal characteristic surface sediment grain-size distributions and are subject to a continuous adaptation to the prevailing hydrodynamic forces. The mixed-energy tidal inlet Otzumer Balje between the East Frisian barrier islands of Langeoog and Spiekeroog in the southern North Sea has been chosen here as a model study area for the identification of relevant hydrodynamic drivers of morphology and sedimentology. We compare the effect of high-energy, wave-dominated storm conditions to mid-term, tide-dominated fair-weather conditions on tidal inlet morphology and sedimentology with a process-based numerical model. A multi-fractional approach with five grain-size fractions between 150 and 450 µm allows for the simulation of corresponding surface sediment grain-size distributions. Net sediment fluxes for distinct conditions are identified: during storm conditions, bed load sediment transport is generally onshore directed on the shallower ebb-tidal delta shoals, whereas fine-grained suspended sediment bypasses the tidal inlet by wave-driven currents. During fair weather the sediment transport mainly focuses on the inlet throat and the marginal flood channels. We show how the observed sediment grain-size distribution and the morphological response at mixed-energy tidal inlets are the result of both wave-dominated less frequent storm conditions and mid-term, tide-dominant fair-weather conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clay-mineral distributions in the Arctic Ocean and the adjacent Eurasian shelf areas are discussed to identify source areas and transport pathways of terrigenous material in the Arctic Ocean. The main clay minerals in Eurasian Arctic Ocean sediments are illite and chlorite. Smectite and kaolinite occur in minor amounts in these sediments, but show strong variations in the shelf areas. These two minerals are therefore reliable in reconstructions of source areas of sediments from the Eurasian Arctic. The Kara Sea and the western part of the Laptev Sea are enriched in smectite, with highest values of up to 70% in the deltas of the Ob and Yenisey rivers. Illite is the dominant clay mineral in all the investigated sediments except for parts of the Kara Sea. The highest concentrations with more than 70% illite occur in the East Siberian Sea and around Svalbard. Chlorite represents the clay mineral with lowest concentration changes in the Eastern Arctic, ranging between 10 and 25%. The main source areas for kaolinite in the Eurasian Arctic are Mesozoic sedimentary rocks on Franz-Josef Land islands. Based on clay-mineral data, transport of the clay fraction via sea ice is of minor importance for the modern sedimentary budget in the Arctic basins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Lena Delta in Northern Siberia is one of the largest river deltas in the world. During peak discharge, after the ice melt in spring, it delivers between 60-8000 m**3/s of water and sediment into the Arctic Ocean. The Lena Delta and the Laptev Sea coast also constitute a continuous permafrost region. Ongoing climate change, which is particularly pronounced in the Arctic, is leading to increased rates of permafrost thaw. This has already profoundly altered the discharge rates of the Lena River. But the chemistry of the river waters which are discharged into the coastal Laptev Sea have also been hypothesized to undergo considerable compositional changes, e.g. by increasing concentrations of inorganic nutrients such as dissolved organic carbon (DOC) and methane. These physical and chemical changes will also affect the composition of the phytoplankton communities. However, before potential consequences of climate change for coastal arctic phytoplankton communities can be judged, the inherent status of the diversity and food web interactions within the delta have to be established. In 2010, as part of the AWI Lena Delta programme, the phyto- and microzooplankton community in three river channels of the delta (Trofimov, Bykov and Olenek) as well as four coastal transects were investigated to capture the typical river phytoplankton communities and the transitional zone of brackish/marine conditions. Most CTD profiles from 23 coastal stations showed very strong stratification. The only exception to this was a small, shallow and mixed area running from the outflow of Bykov channel in a northerly direction parallel to the shore. Of the five stations in this area, three had a salinity of close to zero. Two further stations had salinities of around 2 and 5 throughout the water column. In the remaining transects, on the other hand, salinities varied between 5 and 30 with depth. Phytoplankton counts from the outflow from the Lena were dominated by diatoms (Aulacoseira species) cyanobacteria (Aphanizomenon, Pseudanabaena) and chlorophytes. In contrast, in the stratified stations the plankton was mostly dominated by dinoflagellates, ciliates and nanoflagellates, with only an insignificant diatom component from the genera Chaetoceros and Thalassiosira (brackish as opposed to freshwater species). Ciliate abundance was significantly coupled with the abundance of total flagellates. A pronounced partitioning in the phytoplankton community was also discernible with depth, with a different community composition and abundance above and below the thermocline in the stratified sites. This work is a first analysis of the phytoplankton community structure in the region where Lena River discharge enters the Laptev Sea.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Lena River Delta, situated in Northern Siberia (72.0 - 73.8° N, 122.0 - 129.5° E), is the largest Arctic delta and covers 29,000 km**2. Since natural deltas are characterised by complex geomorphological patterns and various types of ecosystems, high spatial resolution information on the distribution and extent of the delta environments is necessary for a spatial assessment and accurate quantification of biogeochemical processes as drivers for the emission of greenhouse gases from tundra soils. In this study, the first land cover classification for the entire Lena Delta based on Landsat 7 Enhanced Thematic Mapper (ETM+) images was conducted and used for the quantification of methane emissions from the delta ecosystems on the regional scale. The applied supervised minimum distance classification was very effective with the few ancillary data that were available for training site selection. Nine land cover classes of aquatic and terrestrial ecosystems in the wetland dominated (72%) Lena Delta could be defined by this classification approach. The mean daily methane emission of the entire Lena Delta was calculated with 10.35 mg CH4/m**2/d. Taking our multi-scale approach into account we find that the methane source strength of certain tundra wetland types is lower than calculated previously on coarser scales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mud accumulates on continental shelves under a variety of environmental conditions and results in a diverse formation of mud depocenters (MDCs). Their three-dimensional architectures have been in the focus of several recent studies. Due to some terminological confusion concerning MDCs, the present study sets out to define eight individual MDC types in terms of surface sediment distribution and internal geometry. Under conditions of substantial sediment supply, prodeltas (distal zones off river deltas; triangular sheets), subaqueous deltas (disconnected from deltas by strong normal-to-shore currents; wedge-like clinoforms), and mud patches (scattered distribution) and mud blankets (widespread covers) are formed. Forced by hydrodynamic conditions, mud belts in the strict sense (detached from source; elongated bodies), and shallow-water contourite drifts (detached from source; growing normal to prevailing current direction; triangular clinoforms) develop. Controlled by local morphology, mud entrapments (in depressions, behind morphological steps) and mud wedges (triangular clinoforms growing in flow direction) are deposited. Shelf mud deposition took place (1) during early outer-shelf drowning (~14 ka), (2) after inner-shelf inundation to maximum flooding (9.5-6.5 ka), and (3) in sub-recent times (<2 ka). Subsequent expansion may be (1) concentric, in cases where the depocenter formed near the fluvial source, (2) uni-directional, extending along advective current transport paths, and (3) progradational, forming clinoforms that grow either parallel or normal to the bottom current direction. Classical mud belts may be initiated around defined nuclei, the remote sites of which are determined by seafloor morphology rather than the location of the source. From a stratigraphic perspective, mud depocenters coincide with sea-level highstand-related, shelf-wide condensed sections. They often show a conformable succession from transgressive to highstand systems tract stages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Beach and salt marsh vegetation of the Uummannaq District, northern West Greenland (c. 70°15' N - 72° N, 49° W - 54° W) was studied 1998 according to the Braun-Blanquet phytosociological approach. Habitat analyses included soil chemistry. Such vegetation locally occurs and is not developed over extensive areas. On gravely stony beaches a Mertensia maritima ssp. maritima community occurs, while a Honckenya peploides var. diffusa community is confined to sandy beaches. The association Honckenyo diffusae-Elymetum mollis Thannh. 1975 is confined to sandy shore walls and low dunes. All vegetation types are assigned to the alliance Honckenyo- Elymion arenariae Tx. 1966, which again is a unit of the order Honckenyo- Elymetalia arenariae Tx. 1966, which is sub ordered to the class Honckenyo-Elymetea arenariae Tx. 1966. On fine sediments along sheltered coasts salt marsh vegetation is locally developed mainly on fiord deltas and outwash plains of small rivers and streams. A distinct zonation pattern in vegetation can be observed from the lower to upper salt marsh: Puccinellietum phryganodis Hadac 1946 association, Caricetum subspathaceae Hadac 1946 association, Caricetum ursinae Hadac 1946 association (all assigned to the alliance Puccinellion phryganodis Hadac 1946) and Festuco-Caricetum glareosae Nordh. 1954 association (assigned to the alliance Armerion maritimae Br.-Bl. et de Leeuw 1936). Both alliances are units of the order Glauco- Puccinellietalia Beeftink et Westhoff in Beeftink 1965, which is assigned to the class Asteretea tripolii Westhoff et Beeftink in Beeftink 1962. TWINSPAN and CCA support the vegetation classification and the CCA with soil chemistry parameters shows that salinity (related to position above MHW) and Ncontent are strongly correlated with the floristical differentiation of the vegetation of the Honckenyo-Elymetea class. In the Asteretea tripolii class, position above MHW (negatively correlated with pH, conductivity and Clcontent) and fresh water supply are likely the main factors, which affect vegetation differentiation. A synoptic survey of vegetation types from Greenland based on published phytosociological tables is presented and distribution of the vegetation types is addressed, just as their position in a circumpolar context. Moreover a Cochlearia groenlandica-Melandrium triflorum community is described as a new vegetation type, occurring on shallow soil on cliffs influenced by salt spray.