8 resultados para Delay Tolerant Networking
em Publishing Network for Geoscientific
Resumo:
Increasing atmospheric CO2 equilibrates with surface seawater, elevating the concentration of aqueous hydrogen ions. This process, ocean acidification, is a future and contemporary concern for aquatic organisms, causing failures in Pacific oyster (Crassostrea gigas) aquaculture. This experiment determines the effect of elevated pCO2 on the early development of C. gigas larvae from a wild Pacific Northwest population. Adults were collected from Friday Harbor, Washington, USA (48°31.7' N, 12°1.1' W) and spawned in July 2011. Larvae were exposed to Ambient (400 µatm CO2), MidCO2 (700 µatm), or HighCO2 (1,000 µatm). After 24 h, a greater proportion of larvae in the HighCO2 treatment were calcified as compared to Ambient. This unexpected observation is attributed to increased metabolic rate coupled with sufficient energy resources. Oyster larvae raised at HighCO2 showed evidence of a developmental delay by 3 days post-fertilization, which resulted in smaller larvae that were less calcified.
Resumo:
In situ calcification measurements tested the hypothesis that corals from environments (Florida Bay, USA) that naturally experience large swings in pCO2 and pH will be tolerant or less sensitive to ocean acidification than species from laboratory experiments with less variable carbonate chemistry. The pCO2 in Florida Bay varies from summer to winter by several hundred ppm roughly comparable to the increase predicted by the end of the century. Rates of net photosynthesis and calcification of two stress-tolerant coral species, Siderastrea radians and Solenastrea hyades, were measured under the prevailing ambient chemical conditions and under conditions amended to simulate a pH drop of 0.1-0.2 units at bimonthly intervals over a 2-yr period. Net photosynthesis was not changed by the elevation in pCO2 and drop in pH; however, calcification declined by 52 and 50 % per unit decrease in saturation state, respectively. These results indicate that the calcification rates of S. radians and S. hyades are just as sensitive to a reduction in saturation state as coral species that have been previously studied. In other words, stress tolerance to temperature and salinity extremes as well as regular exposure to large swings in pCO2 and pH did not make them any less sensitive to ocean acidification. These two species likely survive in Florida Bay in part because they devote proportionately less energy to calcification than most other species and the average saturation state is elevated relative to that of nearby offshore water due to high rates of primary production by seagrasses.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.