151 resultados para Delaware Water Gap National Recreation Area (N.J. and Pa.)--Maps.

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the international "Overflow-Expedition'' 1973 on R.V. "Meteor" oxygen concentrations in surface layers were measured in order to determine the oxygen gradients within the first two meters and to add some informations to the mechanisms of oxygen exchange at the air-sea interface. These investigations may be interesting also with regard to longterm- observations of the oxygen distribution in the Atlantic, especially the problem of the A.O.U. (apparent oxygen utilization) determination. To measure oxygen gradients a special sampler was built which is able to take water samples each 20 cm of the first 2 meters. These data were supplemented by further samples down to 150 m, taken by conventional water samplers, from which samples were also taken to measure N2/O2-relations. By comparing these relations with theoretical relations in air-saturated water the influence of biological production and consumption on the oxygen contents in water could be estimated. A simple glass apparatus was built to extract gas from the water samples, and hereafter the N2/O2-relations were determined by mass spectrometry. Most distributions of the oxygen anomaly show a negative oxygen balance which varies largely, probably due to strong mixing processes in the Iceland-Faroe ridge area. The distribution of surface oxygen saturation values are of two different types. The values of the stations 260, 262 and 270 stem from mixed water and show homogeneous supersaturations, as can be found instantly when whitecaps appear. The values of 9 other stations are from water, sampled during calm periods which has been mixed and supersaturated before. They show a decreasing oxygen saturation towards the sea surface and often undersaturation in the upper decimeters up to 98 % and even 91 %. So at the air-sea interface even less initial oxygen saturation than 100 % can be found after supersaturation during heavy weather periods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climatic and oceanographic changes, as occurring at a glacial-interglacial scale, may alter the environmental conditions needed for the development of prolific cold-water coral reefs and mounds. Studies constraining the temporal distribution of cold-water corals in the NE Atlantic suggested the cyclic changes of the Atlantic Meridional Overturning Circulation as the main driver for the development and dispersal of cold-water coral ecosystems. However, conclusions were hindered by lack of data from the NW Atlantic. Aiming to overcome this lack of data, the temporal occurrence of cold-water corals in the Cape Lookout area along the southeastern US margin was explored by U-series dating. Furthermore, the local influence of the regional water masses, namely the Gulf Stream, on cold-water coral proliferation and occurrence since the Last Glacial Maximum was examined. Results suggest that the occurrence of cold-water corals in the Cape Lookout area is restricted to interglacial periods, with corals being present during the last ~7 kyr and also during the Eemian (~125 ka). The reconstructed local environmental conditions suggest an offshore displacement of the Gulf Stream and increased influence from the Mid-Atlantic Bight shelf waters during the last glacial period. During the deglacial sea level rise, the Gulf Stream moved coastward providing present-day-like conditions to the surface waters. Nevertheless, present-day conditions at the ocean sea floor were not established before 7.5 cal ka BP once the ultimate demise of the Laurentide ice-sheet caused the final sea level rise and the displacement of the Gulf Stream to its present location. Occasional presence of the Gulf Stream over the site during the Mid- to Late Holocene coincides with enhanced bottom current strength and a slightly higher bottom water temperature, which are environmental conditions that are favorable for cold-water coral growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Five widespread upper Cenozoic tephra layers that are found within continental sediments of the western United States have been correlated with tephra layers in marine sediments in the Humboldt and Ventura basins of coastal California by similarities in major-and trace-element abundances; four of these layers have also been identified in deep-ocean sediments at DSDP sites 34, 36, 173, and 470 in the northeastern Pacific Ocean. These layers, erupted from vents in the Yellowstone National Park area of Wyoming and Idaho (Y), the Cascade Range of the Pacific Northwest (C), and the Long Valley area, California (L), are the Huckleberry Ridge ash bed (2.0 Ma, Y), Rio Dell ash bed (ca. 1.5 Ma, C), Bishop ash bed (0.74 Ma, L), Lava Creek B ash bed (0.62 Ma, Y), and Loleta ash bed (ca. 0.4 Ma, C). The isochronous nature of these beds allows direct comparison of chronologic and climatic data in a variety of depositional environments. For example, the widespread Bishop ash bed is correlated from proximal localities near Bishop in east-central California, where it is interbedded with volcanic and glacial deposits, to lacustrine beds near Tecopa, southeastern California, to deformed on-shore marine strata near Ventura, southwestern California, to deep-ocean sediments at site 470 in the eastern Pacific Ocean west of northern Mexico. The correlations allow us to compare isotopic ages determined for the tephra layers with ages of continental and marine biostratigraphic zones determined by magnetostratigraphy and other numerical age control and also provide iterative checks for available age control. Relative age variations of as much as 0.5 m.y. exist between marine biostratigraphic datums [for example, highest occurrence level of Discoaster brouweri and Calcidiscus tropicus (= C. macintyrei)], as determined from sedimentation rate curves derived from other age control available at each of several sites. These discrepancies may be due to several factors, among which are (1) diachronism of the lowest and highest occurrence levels of marine faunal and floral species with latitude because of ecologic thresholds, (2) upward reworking of older forms in hemipelagic sections adjacent to the tectonically active coast of the western United States and other similar analytical problems in identification of biostratigraphic and magnetostratigraphic datums, (3) dissolution of microfossils or selective diagenesis of some taxa, (4) lack of precision in isotopic age calibration of these datums, (5) errors in isotopic ages of tephra beds, and (6) large variations in sedimentation rates or hiatuses in stratigraphic sections that result in age errors of interpolated datums. Correlation of tephra layers between on-land marine and deep-ocean deposits indicates that some biostratigraphic datums (diatom and calcareous nannofossil) may be truly time transgressive because at some sites, they are found above and, at other sites, below the same tephra layers.