8 resultados para Deformation styles
em Publishing Network for Geoscientific
Resumo:
Leg 190 was the first of a two-leg program across the Nankai accretionary prism and Trough, offshore Japan, aiming to evaluate existing models for prism evolution and to constrain syntectonic sedimentation, deformation styles, mechanical properties, and prism hydrology (Moore, Taira, Klaus, et al., 2001; Moore et al., 2001). More than 400 volcanic ash and siliceous claystone (altered ash) layers were penetrated and sampled during drilling of the six sites from two transects across the accretionary prism (Sites 1173-1178). In sites from the subducting Shikoku Basin (Sites 1173 and 1177) and in the trench axis (Site 1174), recognition of ash layers and diagenetically altered ashes was initially important in defining major lithostratigraphic units. However, it is clear that understanding the diagenesis of the volcanic ashes has considerable implications for prism evolution, mechanical properties, prism hydrology, geochemistry, and fluid flow in the accretionary prism and associated subducting sediments (cf. Masuda et al., 1996, doi 10.1346/CCMN.1996.0440402). Particle size, chemical composition, temperature, depth of burial, and time are all thought to be factors that may affect volcanic ash diagenesis and preservation (Kuramoto et al., 1992, doi:10.2973/odp.proc.sr.127128-2.235.1992; Underwood et al., 1993, doi:10.2973/odp.proc.sr.131.137.1993). The overall aim of this research is to evaluate factors influencing volcanic ash diagenesis in the Nankai Trough area. This data report presents just the results of the sedimentological and petrographic analysis of the volcanic ashes and siliceous claystones from Sites 1173, 1174, and 1177. It is anticipated that when the results of additional geochemical analysis of these lithologies is available a more meaningful evaluation of factors influencing volcanic ash alteration will be possible.
Resumo:
The shape and morphology of the northern Barbados Ridge complex is largely controlled by the sediment yield and failure behavior in response to high lateral loads imposed by convergence. Loads in excess of sediment yield strength result in nonrecoverable deformations within the wedge, and failure strength acts as an upper limit beyond which stresses are released through thrust faults. Relatively high loading rates lead to delayed consolidation and in-situ pore pressures greater than hydrostatic. The sediment yield and failure behavior is described for any stress path by a generalized constitutive model. A yield locus delineates the onset of plastic (non-recoverable) deformation, as defined from the isotropic and anisotropic consolidation responses of high-quality 38-mm triaxial specimens; a failure envelope was obtained by shearing the same specimens in both triaxial compression and extension. The yield locus is shown to be rotated into extension space and is centered about a K-line greater than unity, suggesting that the in-situ major principal stress has rotated into the horizontal plane, and that the sediment wedge is being subjected to extensional effective stress paths.
Resumo:
Sediment deformation features in CRP-2/2A were described during normal logging procedures and from core-scan images. In this paper the origin of soft-sediment folding, contorted bedding, microfaulting, clastic dykes, shear zones and intraformational breccias is discussed. The features have a stratigraphic distribution related to major unconformities and sequence boundaries. Hypotheses for the origins of sediment deformation include hydrofracturing, subglacial shearing, slumping, and gas hydrate formation. Shear zones, microfaults, clastic dykes and contorted bedding within rapidly deposited sediments, suggest that slumping in an ice-distal environment occurred in the early Oligocene. A till wedge beneath a diamictite at 364 mbsf the mid-Oligocene section represents the oldest evidence of grounded ice in CRP-2/2A. Shear zones with a subglacial origin in the early late Oligocene and early Miocene sections of the core are evidence of further grounding events. The interpretation of sediment deformation in CRP-2/2A is compared to other Antarctic stratigraphic records and global eustatic change between the late Eocenel/early Oligocene and the middle Miocene.
Resumo:
Rock samples from Hole 735B, Southwest Indian Ridge, were examined to determine the principal vein-related types of alteration that occurred, the nature of fluids that were present, and the temperatures and pressures of these fluids. Samples studied included veined metagabbro, veined mylonitic metagabbro, felsic trondhjemite, and late-stage leucocratic diopside-bearing veins. The methods used were standard petrographic analysis, mineral chemical analysis by electron microprobe, fluid inclusion petrography and analysis by heating/freezing techniques and laser Raman microspectroscopy, and oxygen isotopic analyses of mineral separates. Alteration in lithologic Units I and II (above the level of Core 118-735B-3OR; approximately 140 meters below the seafloor) is dominated by hydration by seawater-derived fluids at high temperature, up to about 700°C, and low water/rock ratio, during and immediately after pervasive ductile deformation. Below Core 118-735B-30R, pervasive deformation is less common, and brittle veining and brecciation are the major alteration styles. Leucocratic centimeter-scale veins, often containing diopside and plagioclase, were produced by interaction of hot (about 500°C) seawater-derived fluid and gabbro. The water/rock ratio was locally high at the veins and breccia zones, but the integrated water/rock ratio for the lower part of the hole is probably low. Accessory hydrous magmatic or deuteric phases formed from magmatic volatiles in some gabbro and in trondhjemite. Most subsequent alteration was affected by fluids that were seawater-derived, based on isotopic and chemical analyses of minerals and analyses of fluid inclusions. Many early-generation fluid inclusions, associated with high-temperature veining, contain appreciable methane as well as saline water. The source of methane is unclear, but it may have formed as seawater was reduced during low water/rock interaction with ultramafic upper mantle or ultramafic and mafic layer 3. Temperatures of alteration were calculated on the basis of coexisting mineral chemistry and isotopic values. Hydrothermal metamorphism commenced at about 720°C and continued to about 550°C. Leucocratic veining took place at about 500°C. Alteration within brecciated horizons was also at about 500° to less than 400°C, and the trondhjemite was altered at about 550° to below 490°C. Pressures calculated from a diopside-bearing vein, based on a combination of fluid inclusion and isotopic analysis, were 90 to 100 MPa. This pressure places the sample, from Core 118-735B-70R in Unit V, at about 2 km below the seafloor.