864 resultados para Deep-Ocean

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the mid-Pleistocene transition the dominant 41 ka periodicity of glacial cycles transitioned to a quasi-100 ka periodicity for reasons not yet known. This study investigates the potential role of deep ocean hydrography by examining oxygen isotope ratios in benthic foraminifera. Oxygen isotope records from the Atlantic, Pacific and Indian Ocean basins are separated into their ice volume and local temperature/hydrography components using a piece-wise linear transfer function and a temperature calibration. Although our method has certain limitations, the deep ocean hydrography reconstructions show that glacial deep ocean temperatures approached freezing point as the mid-Pleistocene transition progressed. Further analysis suggests that water mass reorganisation could have been responsible for these temperature changes, leading to such stable conditions in the deep ocean that some obliquity cycles were skipped until precessional forcing triggered deglaciation, creating the apparent quasi-100 ka pattern. This study supports previous work that suggests multiples of obliquity cycles dominate the quasi-100 ka glacial cycles with precession components driving deglaciations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report on newly discovered mud volcanoes located at about 4500 m water depth 90 km west of the deformation front of the accretionary wedge of the Gulf of Cadiz, and thus outside of their typical geotectonic environment. Seismic data suggest that fluid flow is mediated by a >400-km-long strike-slip fault marking the transcurrent plate boundary between Africa and Eurasia. Geochemical data (Cl, B, Sr, 87Sr/86Sr, Delta18O, DeltaD) reveal that fluids originate in oceanic crust older than 140 Ma. On their rise to the surface, these fluids receive strong geochemical signals from recrystallization of Upper Jurassic carbonates and clay-mineral dehydration in younger terrigeneous units. At present, reports of mud volcanoes in similar deep-sea settings are rare, but given that the large area of transform-type plate boundaries has been barely investigated, such pathways of fluid discharge may provide an important, yet unappreciated link between the deeply buried oceanic crust and the deep ocean.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In a feasibility study, the potential of proxy data for the temperature and salinity during the Last Glacial Maximum (LGM, about 19 000 to 23 000 years before present) in constraining the strength of the Atlantic meridional overturning circulation (AMOC) with a general ocean circulation model was explored. The proxy data were simulated by drawing data from four different model simulations at the ocean sediment core locations of the Multiproxy Approach for the Reconstruction of the Glacial Ocean surface (MARGO) project, and perturbing these data with realistic noise estimates. The results suggest that our method has the potential to provide estimates of the past strength of the AMOC even from sparse data, but in general, paleo-sea-surface temperature data without additional prior knowledge about the ocean state during the LGM is not adequate to constrain the model. On the one hand, additional data in the deep-ocean and salinity data are shown to be highly important in estimating the LGM circulation. On the other hand, increasing the amount of surface data alone does not appear to be enough for better estimates. Finally, better initial guesses to start the state estimation procedure would greatly improve the performance of the method. Indeed, with a sufficiently good first guess, just the sea-surface temperature data from the MARGO project promise to be sufficient for reliable estimates of the strength of the AMOC.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Carbon isotopic records from benthic foraminifera are used to map patterns of deep ocean circulation between 3 and 2 million years ago, the interval when significant northern hemisphere glaciation began. The delta18O and delta13C data from four Atlantic sites (552, 607, 610, and 704) and one Pacific site (677) show that global cooling over this interval was associated with increased suppression of North Atlantic Deep Water (NADW) formation. However, the relative strength of NADW production was always greater than is observed during late Pleistocene glaciations when extreme decreases in NADW are observed in the deep North Atlantic. Our data indicate that an increase in the equator-to-pole temperature gradient associated with the onset of northern hemisphere glaciation did not intensify deepwater production in the North Atlantic but rather the opposite occurred. This is not unexpected as it is the "warm high-salinity" characteristic, rather than the "low temperature", of thermocline waters that is critical to the deepwater formation process in this region today.