10 resultados para Decay time
em Publishing Network for Geoscientific
Resumo:
Overpressures measured with pore pressure penetrometers during Integrated Ocean Drilling Program (IODP) Expedition 308 reach 70% and 60% of the hydrostatic effective stress (View the MathML source) in the first 200 meters below sea floor (mbsf) at Sites U1322 and U1324, respectively, in the deepwater Gulf of Mexico, offshore Louisiana. High overpressures are present within low permeability mudstones where there have been multiple, very large, submarine landslides during the Pleistocene. Beneath 200 mbsf at Site U1324, pore pressures drop significantly: there are no submarine landslides in this mixture of mudstone, siltstone, and sandstone. The penetrometer measurements did not reach the in situ pressure at the end of the deployment. We used a soil model to determine that an extrapolation approach based on the inverse of square route of time (View the MathML source) requires much less decay time to achieve a desirable accuracy than an inverse time (1/t) extrapolation. Expedition 308 examined how rapid and asymmetric sedimentation above a permeable aquifer drives lateral fluid flow, extreme pore pressures, and submarine landslides. We interpret that the high overpressures observed are driven by rapid sedimentation of low permeability material from the ancestral Mississippi River. Reduced overpressure at depth at Site U1324 suggests lateral flow (drainage) whereas high overpressure at Site U1322 requires inflow from below: lateral flow in the underlying permeable aquifer provides one mechanism for these observations. High overpressure near the seafloor reduces slope stability and provides a mechanism for the large submarine landslides and low regional gradient (2°) offshore from the Mississippi delta.
Resumo:
Basalts from Hole 534A are among the oldest recovered from the ocean bottom, dating from the opening of the Atlantic 155 Ma. Upon exposure to a 1-Oe field for one week, these basalts acquire a viscous remanent magnetization (VRM), which ranges from 4 to 223% of their natural remanent magnetization (NRM). A magnetic field of similar magnitude is observed in the paleomagnetic lab of the Glomar Challenger, and it is therefore doubtful if accurate measurements of magnetic moment in such rocks can be made on board unless the paleomagnetic area is magnetically shielded. No correlation is observed between the Konigsberger ratio (beta), which is usually less than 3, and the ability to acquire a VRM. The VRM shows both a log t dependence and a Richter aftereffect. Both of these, but especially the log t dependence, will cause the susceptibility measurements (made by applying a magnetic field for a very short time) to be minimum values. The susceptibility and derived Q should therefore be used cautiously for magnetic anomaly interpretation, because they can cause the importance of the induced magnetization to be underestimated.
Resumo:
Superoxide is an important transient reactive oxygen species (ROS) in the ocean formed as an intermediate in the redox transformation of oxygen (O2) into hydrogen peroxide (H2O2) and vice versa. This highly reactive and very short-lived radical anion can be produced both via photochemical and biological processes in the ocean. In this paper we examine the decomposition rate of O2- throughout the water column, using new data collected in the Eastern Tropical North Atlantic (ETNA) Ocean. For this approach we applied a semi factorial experimental design, to identify and quantify the pathways of the major identified sinks in the ocean. In this work we occupied 6 stations, 2 on the West African continental shelf and 4 open ocean stations, including the CVOO time series site adjacent to Cape Verde. Our results indicate that in the surface ocean, impacted by Saharan aerosols and sediment resuspension, the main decay pathways for superoxide is via reactions with Mn(||) and organic matter.
Resumo:
Here, for the first time, we have carried out synoptic measurements of viral production and decay rates in continental-shelf and deep-sea sediments of the Mediterranean Sea to explore the viral balance. The net viral production and decay rates were significantly correlated, and were also related to prokaryotic heterotrophic production. The addition of enzymes increased the decay rates in the surface sediments, but not in the subsurface sediments. Both the viral production and the decay rates decreased significantly in the deeper sediment layers, while the virus-to-prokaryote abundance ratio increased, suggesting a high preservation of viruses in the subsurface sediments. Viral decay did not balance viral production at any of the sites investigated, accounting on average for c. 32% of the gross viral production in the marine sediments. We estimate that the carbon (C) released by viral decay contributed 6-23% to the total C released by the viral shunt. Because only ca. 2% of the viruses produced can infect other prokaryotes, the majority is not subjected to direct lysis and potentially remains as a food source for benthic consumers. The results reported here suggest that viral decay can play an important role in biogeochemical cycles and benthic trophodynamics.