100 resultados para Dead reckoning.
em Publishing Network for Geoscientific
Resumo:
Laminated lake sediments from the Dead Sea basin provide high-resolution records of climatic variability in the eastern Mediterranean region, which is especially sensitive to changing climatic conditions. In this study, we aim on detailed reconstruction of climatic fluctuations and related changes in the frequency of flood and dust deposition events at ca. 3300 and especially at 2800 cal. yr BP from high-resolution sediment records of the Dead Sea basin. A ca. 4-m-thick, mostly varved sediment section from the western margin of the Dead Sea (DSEn - Ein Gedi profile) was analysed and correlated to the new International Continental Scientific Drilling Program (ICDP) Dead Sea Deep Drilling Project core 5017-1 from the deep basin. To detect even single event layers, we applied a multi-proxy approach of high-resolution microscopic thin section analyses, micro-X-ray fluorescence (µ-XRF) element scanning and magnetic susceptibility measurements, supported by grain size data and palynological analyses. Based on radiocarbon and varve dating, two pronounced dry periods were detected at ~3500-3300 and ~3000-2400 cal. yr BP which are differently expressed in the sediment records. In the shallow-water core (DSEn), the older dry period is characterised by a thick sand deposit, whereas the sedimentological change at 2800 cal. yr BP is less pronounced and characterised mainly by an enhanced frequency of coarse detrital layers interpreted as erosion events. In the 5017-1 deep-basin core, both dry periods are depicted by halite deposits. The onset of the younger dry period coincides with the Homeric Grand Solar Minimum at ca. 2800 cal. yr BP. Our results suggest that during this period, the Dead Sea region experienced an overall dry climate, superimposed by an increased occurrence of flash floods caused by a change in synoptic weather patterns.
Resumo:
The rain regime of the Levant during the late Quaternary was controlled primarily by Mediterranean cyclonic systems associated with North Atlantic climate shifts. Lake levels in the Dead Sea basin have been robust recorders of the regional hydrology and generally indicate highstand (wet) conditions throughout glacial intervals and lowstands (dry) during interglacials. However, sporadic deposition of travertines and speleothems occurred in the Negev Desert and Arava Valley during past interglacials, suggesting intrusions of humidity from southern sources probably in association with enhanced activity of mid-latitude Red Sea synoptic troughs and/or low-latitude tropical plumes. The southerly incursions of wetness were superimposed on the long-term interglacial Levantine arid conditions, as reflected by the current prevailing hyperaridity, and could have had an important impact on human migra- tion through the Red Sea-Dead Sea corridor.
Resumo:
In this paper we describe the stratigraphy and sediments deposited in Lake Samra that occupied the Dead Sea basin between ~135 and 75 ka. This information is combined with U/Th dating of primary aragonites in order to estimate a relative lake-level curve that serves as a regional paleohydrological monitor. The lake stood at an elevation of ~340 m below mean sea level (MSL) during most of the last interglacial. This level is relatively higher than the average Holocene Dead Sea (~400±30 m below MSL). At ~120 and ~85 ka, Lake Samra rose to ~320 m below MSL while it dropped to levels lower than ?380 m below MSL at ~135 and ~75 ka, reflecting arid conditions in the drainage area. Lowstands are correlated with warm intervals in the Northern Hemisphere, while minor lake rises are probably related to cold episodes during MIS 5b and MIS 5d. Similar climate relationships are documented for the last glacial highstand Lake Lisan and the lowstand Holocene Dead Sea. Yet, the dominance of detrital calcites and precipitation of travertines in the Dead Sea basin during the last interglacial interval suggest intense pluvial conditions and possible contribution of southern sources of wetness to the region.
Resumo:
Eight-month-old blocks of the coral Porites lobata colonized by natural Hawaiian euendolithic and epilithic communities were experimentally exposed to two different aqueous pCO2 treatments, 400 ppmv and 750 ppmv, for 3 months. The chlorophyte Ostreobium quekettii dominated communities at the start and at the end of the experiment (65-90%). There were no significant differences in the relative abundance of euendolithic species, nor were there any differences in bioeroded area at the surface of blocks (27%) between pCO2 treatments. The depth of penetration of filaments of O. quekettii was, however, significantly higher under 750 ppmv (1.4 mm) than under 400 ppmv (1 mm). Consequently, rates of carbonate dissolution measured under elevated pCO2 were 48% higher than under ambient pCO2 (0.46 kg CaCO3 dissolved m2/a versus 0.31 kg /m2/a). Thus, biogenic dissolution of carbonates by euendoliths in coral reefs may be a dominant mechanism of carbonate dissolution in a more acidic ocean.
Resumo:
After death of benthic and planktic foraminifera their tests intensive dissolve in sediments of the upper sublittoral zone (depth 30-60 m) in the highest productivity area of surface water in the northern Peruvian region. Dissolution of fine pelitic ooze is more intensive than of sandy sediments. Rate of dissolution is lower in the lower sublittoral zone (60-200 m) than in the upper part of the zone. Within the upper bathyal zone (300-500 m) dissolution decreases and results to accumulation of carbonate test in this zone. Benthic tests are more abundant than planktic ones. Very poor species composition and a peculiar set of species are characteristic of foraminiferal assemblages found in the sublittoral and upper bathyal zones along the Peruvian coast.