29 resultados para DeMiller, Anna L.
em Publishing Network for Geoscientific
Resumo:
Three long-term temperature data series measured in Portugal were studied to detect and correct non-climatic homogeneity breaks and are now available for future studies of climate variability. Series of monthly minimum (Tmin) and maximum (Tmax) temperatures measured in the three Portuguese meteorological stations of Lisbon (from 1856 to 2008), Coimbra (from 1865 to 2005) and Porto (from 1888 to 2001) were studied to detect and correct non-climatic homogeneity breaks. These series together with monthly series of average temperature (Taver) and temperature range (DTR) derived from them were tested in order to detect homogeneity breaks, using, firstly, metadata, secondly, a visual analysis and, thirdly, four widely used homogeneity tests: von Neumann ratio test, Buishand test, standard normal homogeneity test and Pettitt test. The homogeneity tests were used in absolute (using temperature series themselves) and relative (using sea-surface temperature anomalies series obtained from HadISST2 close to the Portuguese coast or already corrected temperature series as reference series) modes. We considered the Tmin, Tmax and DTR series as most informative for the detection of homogeneity breaks due to the fact that Tmin and Tmax could respond differently to changes in position of a thermometer or other changes in the instrument's environment; Taver series have been used, mainly, as control. The homogeneity tests show strong inhomogeneity of the original data series, which could have both internal climatic and non-climatic origins. Homogeneity breaks which have been identified by the last three mentioned homogeneity tests were compared with available metadata containing data, such as instrument changes, changes in station location and environment, observing procedures, etc. Significant homogeneity breaks (significance 95% or more) that coincide with known dates of instrumental changes have been corrected using standard procedures. It was also noted that some significant homogeneity breaks, which could not be connected to the known dates of any changes in the park of instruments or stations location and environment, could be caused by large volcanic eruptions. The corrected series were again tested for homogeneity: the corrected series were considered free of non-climatic breaks when the tests of most of monthly series showed no significant (significance 95% or more) homogeneity breaks that coincide with dates of known instrument changes. Corrected series are now available in the frame of ERA-CLIM FP7 project for future studies of climate variability.
Resumo:
Geological storage of CO2 that has been captured at large, point source emitters represents a key potential method for reduction of anthropogenic greenhouse gas emissions. However, this technology will only be viable if it can be guaranteed that injected CO2 will remain trapped in the subsurface for thousands of years or more. A signi?cant issue for storage security is the geomechanical response of the reservoir. Concerns have been raised that geomechanical deformation induced by CO2 injection will create or reactivate fracture networks in the sealing caprocks, providing a pathway for CO2 leakage. In this paper, we examine three large-scale sites where CO2 is injected at rates of ab. 1 megatonne/y or more: Sleipner, Weyburn, and In Salah. We compare and contrast the observed geomechanical behavior of each site, with particular focus on the risks to storage security posed by geomechanical deformation. At Sleipner, the large, high-permeability storage aquifer has experienced little pore pressure increase over 15 y of injection, implying little possibility of geomechanical deformation. At Weyburn, 45 y of oil production has depleted pore pressures before increases associated with CO2 injection. The long history of the ?eld has led to complicated, sometimes nonintuitive geomechanical deformation. At In Salah, injection into the water leg of a gas reservoir has increased pore pressures, leading to uplift and substantial microseismic activity. The differences in the geomechanical responses of these sites emphasize the need for systematic geomechanical appraisal before injection in any potential storage site.
Resumo:
DATED-1 comprises a compilation of dates related to the build-up and retreat of the Eurasian (British-Irish, Scandinavian, Svalbard-Barents-Kara Seas) Ice Sheets, and time-slice maps of the Eurasian Ice sheet margins. Dates are sourced from the published literature. Ice margins are based on published geological and chronological data and include uncertainty bounds (maximum, minimum) as well as what we consider to be the most-credible (mc) based on the available evidence. DATED-1 has a census date of 1 January 2013. Full description and caveats for use are given in: Hughes, A.L.C., Gyllencreutz, R., Lohne, Ø.S., Mangerud, J., Svendsen, J.I. (2015) The last Eurasian Ice Sheets - a chronological database and time-slice reconstruction, DATED-1.