9 resultados para Davis, Stephen J.: Job creation and destruction

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work considers results of a study of Holocene cover sediments in Iceland. They are largely composed of wind-transported palagonitized hyaloclastite particles and coeval horizons of acid and basic tephras. It is established that polyciclic aromatic hydrocarbons (PAH) are released from basaltic glass in natural environments only in case of intense physicochemical alteration and destruction of its structure. This process does not influence PAH composition and their quantitative proportions. No new PAH formed during several thousands of years in Holocene section. Hydrocarbons are transferred from fixed state in basaltic glass into free state in palagonites practically without any changes. PAH were mainly redeposited by winds, derived together with palagonite from weathered hyaloclastites, and precipitated from atmosphere with tephra during eruptions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alkali phosphatase activity and hydrochemical structure of waters in the Barents and Norwegian seas were investigated. In a sea with the seasonal bioproduction cycle alkali phosphatase activity is also seasonal, rising with trophic level of waters. At the end of hydrological and biological winter activity is practically zero. Alkali phosphatase activity is especially important in summer, when plankton has consumed winter supply of phosphate in the euphotic layer and nutrient limitation of primary production begins. In summer production and destruction cycle, apparent time for recycling of phosphorus by phosphatase in suspended matter in the euphotic layer of the Barents Sea and Norwegian Sea averages from 7 to 30 hours.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sediment samples from both Site 165-999/165-1000 (Atlantic) and Site 202-1241 (Pacific) were chosen at 1Ma intervals over the period 0.3-9.3Ma. Samples were washed and sieved <150µm. Splits of the sediment fraction were picked completely to obtain, where possible, at least 30 specimens each of planktic foraminifer species Globigerinoides sacculifer and Globorotalia tumida, on which outline analysis (Fourier) was performed. Sea surface and thermocline temperatures were reconstructed from palaeoenvironmental proxies (UK37' and Tex86H respectively).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Late Pleistocene signals of calcium carbonate, organic carbon, and opaline silica concentration and accumulation are documented in a series of cores from a zonal/meridional/depth transect in the equatorial Atlantic Ocean to reconstruct the regional sedimentary history. Spectral analysis reveals that maxima and minima in biogenous sedimentation occur with glacial-interglacial cyclicity as a function of both (1) primary production at the sea surface modulated by orbitally forced variation in trade wind zonality and (2) destruction at the seafloor by variation in the chemical character of advected intermediate and deep water from high latitudes modulated by high-latitude ice volume. From these results a pattern emerges in which the relative proportion of signal variance from the productivity signal centered on the precessional (23 kyr) band decreases while that of the destruction signal centered on the obliquity (41 kyr) and eccentricity (100 kyr) periods increases below ~3600-m ocean depth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radiocarbon age relationships between co-occurring planktic foraminifera, alkenones, and total organic carbon in sediments from the continental margins of southern Chile, northwest Africa, and the South China Sea were compared with published results from the Namibian margin. Age relationships between the sediment components are site-specific and relatively constant over time. Similar to the Namibian slope, where alkenones have been reported to be 1000-4500 years older than co-occurring foraminifera, alkenones were significantly (~1000 years) older than co-occurring foraminifera in the Chilean margin sediments. In contrast, alkenones and foraminifera were of similar age (within 2 sigma error or better) in the NW African and South China Sea sediments. Total organic matter and alkenone ages were similar off Namibia (age difference TOC alkenones: 200-700 years), Chile (100-450 years), and NW Africa (360-770 years), suggesting minor contributions of preaged terrigenous material. In the South China Sea, total organic carbon is significantly (2000-3000 years) older owing to greater inputs of preaged terrigenous material. Age offsets between alkenones and planktic foraminifera are attributed to lateral advection of organic matter. Physical characteristics of the depositional setting, such as seafloor morphology, shelf width, and sediment composition, may control the age of co-occurring sediment components. In particular, offsets between alkenones and foraminifera appear to be greatest in deposition centers in morphologic depressions. Aging of organic matter is promoted by transport. Age offsets are correlated with organic richness, suggesting that formation of organic aggregates is a key process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The metabolic rate of organisms may either be viewed as a basic property from which other vital rates and many ecological patterns emerge and that follows a universal allometric mass scaling law; or it may be considered a property of the organism that emerges as a result of the organism's adaptation to the environment, with consequently less universal mass scaling properties. Data on body mass, maximum ingestion and clearance rates, respiration rates and maximum growth rates of animals living in the ocean epipelagic were compiled from the literature, mainly from original papers but also from previous compilations by other authors. Data were read from tables or digitized from graphs. Only measurements made on individuals of know size, or groups of individuals of similar and known size were included. We show that clearance and respiration rates have life-form-dependent allometries that have similar scaling but different elevations, such that the mass-specific rates converge on a rather narrow size-independent range. In contrast, ingestion and growth rates follow a near-universal taxa-independent ~3/4 mass scaling power law. We argue that the declining mass-specific clearance rates with size within taxa is related to the inherent decrease in feeding efficiency of any particular feeding mode. The transitions between feeding mode and simultaneous transitions in clearance and respiration rates may then represent adaptations to the food environment and be the result of the optimization of tradeoffs that allow sufficient feeding and growth rates to balance mortality.