2 resultados para DROUGHT
em Publishing Network for Geoscientific
Resumo:
Probabilistic climate data have become available for the first time through the UK Climate Projections 2009, so that the risk of tree growth change can be quantified. We assess the drought risk spatially and temporally using drought probabilities and tree species vulnerabilities across Britain. We assessed the drought impact on the potential yield class of three major tree species (Picea sitchensis, Pinus sylvestris, and Quercus robur) which presently cover around 59% (400,700 ha) of state-managed forests, across lowland and upland sites. Here we show that drought impacts result mostly in reduced tree growth over the next 80 years when using b1, a1b and a1fi IPCC emissions scenarios. We found a maximum reduction of 94% but also a maximum increase of 56% in potential stand yield class in the 2080s from the baseline climate (1961-1990). Furthermore, potential production over the national forest estate for all three species in the 2080s may decrease due to drought by 42% in the lowlands and 32% in the uplands in comparison to the baseline climate. Our results reveal that potential tree growth and forest production on the national forest estate in Britain is likely to reduce, and indicate where and when adaptation measures are required. Moreover, this paper demonstrates the value of probabilistic climate projections for an important economic and environmental sector.
Resumo:
The Kongtong Mountain area is a marginal area of the Asian summer monsoon and is sensitive to monsoon dynamics. The sensitivity highlights the need to establishing long-term climate records there and evaluating links with the Asian monsoon. Using "signal-free" methods, we developed a tree-ring chronology based 52 ring-width series from 23 Pinus tabulaeformis and Pinus armandidi trees in the Kongtong Mountain, northern China. Tree growth is highly correlated (0.844) with the Palmer Drought Severity Index (PDSI) from May to July, demonstrating the strength of PDSI in modeling drought conditions in this region. We therefore developed a robust May-July PDSI reconstruction spanning 1615-2009, which explained 71.2% of the instrumental variance for the period 1951-2005. Extremely dry epochs are found in periods of 1723-1727 and 1928-1932, and significant wet conditions are seen from 1696-1700, 1753-1757 and 1963-1969. These persistent dry and wet epochs were also found in northeastern Mongolia, suggesting similar drought regimes between these two regions. The dryness that occurred in the 1920s-1930s was the most severe and was concurrent with a warming period. This warming/drying relationship of the 1920s-1930s may be an analog to the current drying trend in northern China.