20 resultados para DIFFERENT ENVIRONMENTS
em Publishing Network for Geoscientific
Resumo:
The major topographic features, or provinces, beyond the continental slope off the Atlantic coast of the United States are (1) Sohm Plain, (2) Hatteras Plain, (3) Nares Plain, (4) Blake Basin, (5) Blake Plateau-Bahama Banks, and (6) Bermuda Rise. The whole of the described area is commonly referred to as the North American Basin. This basin is bounded on the north by Newfoundland Ridge and on the south by Puerto Rico Trench. Topographic features of note within the basin are the divide and the area of depressions between Sohm and Hatteras Plains, the sharply crested Blake Ridge, and the Puerto Rico Ridge. Recently accumulated data on deep-sea oores has given good evidence that the silt and sand covering the abyssal plains are displaced continental sediments in a virtually quartz-free oceanic environment. These sediments were deposited on a primary volcanic bottom. The primary or volcanic bottom is characterized by abyssal hills and seamounts, and the sediment bottom is characterized by abyssal plains, which extend seaward from the continental margins. On the Blake Plateau, bottom photographs and dredge hauls in the axis of the stream show that locally sediment has been removed and the bottom is paved with crusts and nodules of manganese. Photographs and dredged samples from the outer part of the New England Seamount, Chain and Caryn Peak also indicate extensive encrustations of manganese oxide which acts as a binding agent in areas of ooze or other organic debris and thus helps to stabilize the bottom.
Resumo:
We obtained sediment physical properties and geochemical data from 47 piston and gravity cores located in the Bay of Bengal, to study the complex history of the Late Pleistocene run-off from the Ganges and Brahmaputra rivers and its imprint on the Bengal Fan. Grain-size parameters were predicted from core logs of density and velocity to infer sediment transport energy and to distinguish different environments along the 3000-km-long transport path from the delta platform to the lower fan. On the shelf, 27 cores indicate rapidly prograding delta foresets today that contain primarily mud, whereas outer shelf sediment has 25% higher silt contents, indicative of stronger and more stable transport regime, which prevent deposition and expose a Late Pleistocene relic surface. Deposition is currently directed towards the shelf canyon 'Swatch of No Ground', where turbidites are released to the only channel-levee system that is active on the fan during the Holocene. Active growth of the channel-levee system occurred throughout sea-level rise and highstand with a distinct growth phase at the end of the Younger Dryas. Coarse-grained material bypasses the upper fan and upper parts of the middle fan, where particle flow is enhanced as a result of flow-restriction in well-defined channels. Sandier material is deposited mainly as sheet-flow deposits on turbidite-dominated plains at the lower fan. The currently most active part of the fan with 10-40 cm thick turbidites is documented for the central channel including inner levees (e.g., site 40). Site 47 from the lower fan far to the east of the active channel-levee system indicates the end of turbidite sedimentation at 300 ka for that location. That time corresponds to the sea-level lowering during late isotopic stage 9 when sediment supply to the fan increased and led to channel avulsion farther upstream, probably indicating a close relation of climate variability and fan activity. Pelagic deep-sea sites 22 and 28 contain a 630-kyear record of climate response to orbital forcing with dominant 21- and 41-kyear cycles for carbonate and magnetic susceptibility, respectively, pointing to teleconnections of low-latitude monsoonal forcing on the precession band to high-latitude obliquity forcing. Upper slope sites 115, 124, and 126 contain a record of the response to high-frequency climate change in the Dansgaard-Oeschger bands during the last glacial cycle with shared frequencies between 0.75 and 2.5 kyear. Correlation of highs in Bengal Fan physical properties to lows in the d18O record of the GISP2 ice-core suggests that times of greater sediment transport energy in the Bay of Bengal are associated with cooler air temperatures over Greenland. Teleconnections were probably established through moisture and other greenhouse-gas forcing that could have been initiated by instabilities in the methane hydrate reservoir in the oceans.
Resumo:
Access to different environments may lead to inter-population behavioural changes within a species that allow populations to exploit their immediate environments. Elephant seals from Marion Island (MI) and King George Island (KGI) (Isla 25 de Mayo) forage in different oceanic environments and evidently employ different foraging strategies. This study elucidates some of the factors influencing the diving behaviour of male southern elephant seals from these populations tracked between 1999 and 2002. Mixed-effects models were used to determine the influence of bathymetry, population of origin, body length (as a proxy for size) and individual variation on the diving behaviour of adult male elephant seals from the two populations. Males from KGI and MI showed differences in all dive parameters. MI males dived deeper and longer (median: 652.0 m and 34.00 min) than KGI males (median: 359.1 m and 25.50 min). KGI males appeared to forage both benthically and pelagically while MI males in this study rarely reached depths close to the seafloor and appeared to forage pelagically. Model outputs indicate that males from the two populations showed substantial differences in their dive depths, even when foraging in areas of similar water depth. Whereas dive depths were not significantly influenced by the size of the animals, size played a significant role in dive durations, though this was also influenced by the population that elephant seals originated from. This study provides some support for inter-population differences in dive behaviour of male southern elephant seals.
Resumo:
The combined use of grain size and magnetic fabric analyses provides the ability to discriminate among depositional environments in deep-sea terrigenous sediments. We analyzed samples from three different depositional settings: turbidites, pelagic or hemipelagic interlayers, and sediment drifts. Results indicate that sediment samples from these different environments can be distinguished from each other on the basis of their median grain size, sorting, as well as the intensity and shape of magnetic fabric as determined from an examination of the anisotropy of magnetic susceptibility. We use these discriminators to interpret downcore samples from the Bermuda Rise sediment drift. We find that the finer grains of the Bermuda Rise (relative to the Blake Outer Ridge) do not result from lower depositional energy (current speed) and so may reflect a difference in the nature of sediment being delivered to the site (i.e., distance from source) between the two locations.
Resumo:
The ecological theory of adaptive radiation predicts that the evolution of phenotypic diversity within species is generated by divergent natural selection arising from different environments and competition between species. Genetic connectivity among populations is likely also to have an important role in both the origin and maintenance of adaptive genetic diversity. Our goal was to evaluate the potential roles of genetic connectivity and natural selection in the maintenance of adaptive phenotypic differences among morphs of Arctic charr, Salvelinus alpinus, in Iceland. At a large spatial scale, we tested the predictive power of geographic structure and phenotypic variation for patterns of neutral genetic variation among populations throughout Iceland. At a smaller scale, we evaluated the genetic differentiation between two morphs in Lake Thingvallavatn relative to historically explicit, coalescent-based null models of the evolutionary history of these lineages. At the large spatial scale, populations are highly differentiated, but weakly structured, both geographically and with respect to patterns of phenotypic variation. At the intralacustrine scale, we observe modest genetic differentiation between two morphs, but this level of differentiation is nonetheless consistent with strong reproductive isolation throughout the Holocene. Rather than a result of the homogenizing effect of gene flow in a system at migration-drift equilibrium, the modest level of genetic differentiation could equally be a result of slow neutral divergence by drift in large populations. We conclude that contemporary and recent patterns of restricted gene flow have been highly conducive to the evolution and maintenance of adaptive genetic variation in Icelandic Arctic charr.
Resumo:
It is believed that C4 to C7 hydrocarbons in petroleum are formed by the cracking of organic matter at depths generally exceeding 1,000 m at temperatures in excess of 50 °C (Cordel, 1972; Dow, 1974; Tissot et al., 1974)). Also, none of the alkanes in the butane-heptane range are formed biologically as far as is known at present. Consequently, it is thought that they do not occur in shallow, Recent sediments. In 1962, I analysed 22 samples of Recent sediments from 7 different environments and verified that these hydrocarbons were not present at the p.p.m. level (Dunton and Hunt, 1962) although traces of a few hydrocarbons such as butane, isobutane, isopentane and n-heptane have been found (Sokolov, 1957; Veber and Turkeltaub, 1958; Erdman et al., 1958; Emery and Hoggan, 1958). No identification of individual hexanes or heptanes has been reported except when there has been clear evidence of seepage from deeper source sediments (McIver, 1973).
Resumo:
During the "Polarstern"-expeditions ARK-IX/4 (1993) and ARK-XI/1 (1995), organised by the Alfred Wegener Institute (AWI), acoustic subbottom profiles (Parasound) have been collected in the Laptev Sea Shelf, Siberia. These data have been interpreted as an indicator of ice scours frequency and off-shore permafrost patterns. An additional acoustic profile data-base was available by the results of the expedition of the Federal Institute for Geosciences and Natural Resources (BGR) of the year 1994. The area of the expedition was located closer to the shelf, therefore supports a better understanding of ice scours frequency in shallower marine environments. The data-file consists of a 2930 km Parasound-traverse and has been subdivided into 586 working profiles. They are characterised by their location, number of ice scours, interpreted patterns of reflection and their extension and morphology. The data have been evaluated statistically and graphically and were presented in a map. Different patterns of sea floor reflection were established by different environments, outer influences (e.g. size of the icebergs, direction of the drift of icebergs) and the climatic history of the region. In the north-westerly region of the Laptev Sea at the continental slope of Severnaya Zemlya the sea floor in shallower depths has been ploughed intensely by recent icebergs. In some regions (40-60m), as an effect of intensely ploughing, the sea floor is hardly defined in acoustic profiles come along with relocation of marine deposits. Glacial diamiet deposits prevented the development of deep scours. Up to 355m deeper scours result from lower sea levels. The marginal north-easterly region of the Laptev Sea is characterised exclusively by this type of scour. Morphology and depth of these scours can be compared with those of the westerly Vilkitsky-Street so that similar conditions of development may be expected. Both, the north-easterly Laptev Sea and the Vilkitsky-Street, are not dominated by patterns ofrecent icebergs. In contrary the shelf-regions north-easterly ofthe Taimyr peninsula and north-westerly of the New Siberian Islands have been modified evidently by recent icebergs, which drifted with prevalent currents anticlockwise along the shelf edge of the Laptev Sea and cause the deepest scours of the whole region. The off-shore permafrost at the inner shelf regions has an important influence on the scours intensity. The permafrost layer can be recognised by the maximum depth of ice scours. It is represented by a Parasound reflector that can be made up for distances. The age of the ice scours cannot be determined absolutely by Parasound data but a relative order can be estimated whenever two scours are situated close to each other. When the Parasound-traverse ofthe expedition ARK-IX/4 (1993) (77°24'N 133°30'E-77°30'N 133°40'E) was repeated partially in expedition ARK-XI/l (1995) the ice scours of 1993 remained unchanged and uneroded and no new ice scours had been detected. It can be concluded that scours persist for a long time in the Laptev Sea, though after all with an average of 3 ice scours per kilometer there are not many at all in the Laptev Sea.
Resumo:
1. Desmoscolecida from the continental slope and the deep-sea bottom (59-4354 m) off the Portuguese and Moroccan coasts are described. 18 species were identified: Desmoscolex bathyalis sp. nov., D. chaetalatus sp. nov., D. eftus sp. nov., D. galeatus sp. nov., D. lapilliferus sp. nov., D. longisetosus Timm, 1970, D. lorenzeni sp. nov., D. perspicuus sp. nov., D. pustulatus sp. nov., Quadricoma angulocephala sp. nov., Q. brevichaeta sp. nov., Q. iberica sp. nov., Q. loricatoides sp. nov., Tricoma atlantica sp. nov., T. bathycola sp. nov., T. beata sp. nov., T. incomposita sp. nov., T. meteora sp. nov., T. mauretania sp. nov. 2. The following new terms are proposed: "Desmos" (ring-shaped concretions consisting of secretion and concretion particles), "desmoscolecoid" and "tricomoid" arrangement of the somatic setae, "regelmaessige" (regular), "unregelmaessige" (irregular), "vollstaendige" (complete) and "unvollstaendige" (incomplete) arrangement of somatic seta (variations in the desmoscolecoid arrangement of the somatic setae). The length of the somatic setae is given in the setal pattern. 3. Desmoscolecida identical as to genus and species exhibit no morphological differences even if forthcoming from different bathymetrical zones (deep sea, sublitoral, litoral) or different environments (marin, freshwater, coastal subsoil water, terrestrial environment). 4. Lorenzen's (1969) contention that thearrangement of the somatic setae is more significant for the natural relationships between the different genera of Desmoscolecida than other characteristics is further confirmed. Species with tricomoid arrangement of somatic setae are regarded as primitive, species with desmoscolecoid arrangement of somatic setae are regarded as more advanced. 5. Three new genus are established: Desmogerlachia gen. nov., Desmolorenzenia gen. nov. and Desmofimmia gen. nov. - Protricoma Timm, 1970 is synonymized with Paratricoma Gerlach, 1964 and Protodesmoscolex Timm, 1970 is synonymized with Desmoscolex Claparede,1863. 6. Checklists of all species of the order Desmoscolecida and keys to species of the subfamilies Tricominae and Desmoscolecinae are provided. 7. The following nomenclatorial changes are suggested: Desmogerlachia papillifer (Gerlach, 1956) comb. nov., D .pratensis (Lorenz, 1969) comb. nov., Desmotimmia mirabilis (Timm, 1970) comb. nov., Paratricoma squamosa (Timm, 1970) comb. nov., Desmolorenzenia crassicauda (Timm, 1970) comb. nov., D. desmoscolecoides (Timm, 1970) comb. nov., D. eurycricus (Filipjev, 1922) comb. nov., D. frontalis (Gerlach, 1952) comb. nov., D. hupferi (Steiner, 1916) comb. nov., D. longicauda (Timm, 1970) comb. nov., D. parva (Timm, 1970) comb. nov., D. platycricus (Steiner, 1916) comb. nov., D. viffata (Lorenzen, 1969) comb. nov., Desmoscolex anfarcficos (Timm, 1970) comb. nov.
Resumo:
The widespread occurrence of microbialites in the last deglacial reef frameworks (16-6 Ka BP) implies that the accurate study of their development patterns is of prime importance to unravel the evolution of reef architecture through time and to reconstruct the reef response to sea-level variations and environmental changes. The present study is based on the sedimentological and chronological analysis (14C AMS dating) of drill cores obtained during the IODP Expedition #310 "Tahiti Sea Level" on the successive terraces which typify the modern reef slopes from Tahiti. It provides a comprehensive data base to investigate the microbialite growth patterns (i.e. growth rates and habitats), to analyze their roles in reef frameworks and to reconstruct the evolution of the reef framework architecture during sea-level rise. The last deglacial reefs from Tahiti are composed of two distinctive biological communities: (1) the coralgal communities including seven assemblages characterized by various growth forms (branching, robust branching, massive, tabular and encrusting) that form the initial frameworks and (2) the microbial communities developed in the primary cavities of those frameworks, a few meters (1.5 to 6 m) below the living coral reef surface, where they heavily encrusted the coralgal assemblages to form microbialite crusts. The dating results demonstrate the occurrence of two distinctive generations of microbialites: the "reefal microbialites" which developed a few hundred years after coralgal communities in shallow-water environments, whereas the "slope microbialites" grew a few thousands of years later in significantly deeper water conditions after the demise of coralgal communities. The development of microbialites was controlled by the volume and the shape of the primary cavities of the initial reef frameworks determined by the morphology and the packing of coral colonies. The most widespread microbialite development occurred in frameworks dominated by branching, thin encrusting, tabular and robust branching coral colonies which built loose and open frameworks typified by a high porosity (> 50%). In contrast, their growth was minimal in compact coral frameworks formed by massive and thick encrusting corals where primary cavities yielded a low porosity (~ 30%) and could not host a significant microbialite expansion.
Resumo:
Gas hydrates represent one of the largest pools of readily exchangeable carbon on Earth's surface. Releases of the greenhouse gas methane from hydrates are proposed to be responsible for climate change at numerous events in geological history. Many of these inferred events, however, were based on carbonate carbon isotopes which are susceptible to diagenetic alterations. Here we propose a molecular fossil proxy, i.e., the "Methane Index (MI)", to detect and document the destabilization and dissociation of marine gas hydrates. MI consists of the relative distribution of glycerol dibiphytanyl glycerol tetraethers (GDGTs), the core membrane lipids of archaea. The rational behind MI is that in hydrate-impacted environments, the pool of archaeal tetraether lipids is dominated by GDGT-1, -2 and -3 due to the large contribution of signals from the methanotrophic archaeal community. Our study in the Gulf of Mexico cold-seep sediments demonstrates a correlation between MI and the compound-specific carbon isotope of GDGTs, which is strong evidence supporting the MI-methane consumption relationship. Preliminary applications of MI in a number of hydrate-impacted and/or methane-rich environments show diagnostic MI values, corroborating the idea that MI may serve as a robust indicator for hydrate dissociation that is useful for studies of global carbon cycling and paleoclimate change.
Resumo:
In wide areas of Northern Siberia, glaciers have been absent since the Late Pleistocene. Therefore, ground ice and especially ice wedges are used as archives for paleoclimatic studies. In the present study, carried out on the Bykovsky Peninsula, eastern Lena Delta, we were able to distinguish ice wedges of different genetic units by means of oxygen and hydrogen isotopes. The results obtained by this study on the Ice Complex, a peculiar periglacial phenomenon, allowed the reconstruction of the climate history with a subdivision of a period of very cold winters (60-55 ka), followed by a long stable period of cold winter temperatures (50-24 ka), Between 20 ka and 11 ka, climate warming is indicated in stable isotope compositions, most probably after the Late Glacial Maximum. At that time, a change of the marine source of the precipitation from a more humid source to the present North AtIantic source region was assumed. For the Ice Complex, a continuous age-height relationship was established, indicating syngenetic vertical ice wedge growth and sediment accumulation rates of 0.7 m/ky. During the Holocene optimum, ice wedge growth was probably limited due to the extensive formation of lacustrine environments. Holocene ice wedges in thermokarst depressions (alases) and thermoerosional valleys (logs) were formed after climate deterioration from about 4.5 ka until the present. Winter temperatures were warmer at this time as compared to the cooler Pleistocene. Migration of bound water between ice wedges and segregated ice may have altered the isotopic composition of old ice wedges. The presence of ice wedges as diagnostic features for permafrost conditions since 60 ka, implies that a large glacier extending over the Laptev Sea shelf did not exist. For the remote non-glaciated areas of Northern Siberia, ice wedges were established as a powerful climate archive.
Resumo:
Long chain 1,13- and 1,15-alkyl diols form the base of a number of recently proposed proxies used for climate reconstruction. However, the sources of these lipids and environmental controls on their distribution are still poorly constrained. We have analyzed the long chain alkyl diol (LCD) composition of cultures of ten eustigmatophyte species, with three species from different families grown at various temperatures, to identify the effect of species composition and growth temperature on the LCD distribution. The results were compared with the LCD distribution of sixty-two lake surface sediments, and with previously reported LCD distributions from marine environments. The different families within the Eustigmatophyceae show distinct LCD patterns, with the freshwater family Eustigmataceae most closely resembling LCD distributions in both marine and lake environments. Unlike the other two eustigmatophyte families analyzed (Monodopsidaceae and Goniochloridaceae), C28 and C30 1,13-alkyl diols and C30 and C32 1,15-alkyl diols are all relatively abundant in the family Eustigmataceae, while the mono-unsaturated C32 1,15-alkyl diol was below detection limit. In contrast to the marine environment, LCD distributions in lakes did not show a clear relationship with temperature. The Long chain Diol Index (LDI), a proxy previously proposed for sea surface temperature reconstruction, showed a relatively weak correlation (R2 = 0.33) with mean annual air temperature used as an approximation for annual mean surface temperature of the lakes. A much-improved correlation (R2 = 0.74, p-value<0.001) was observed applying a multiple linear regression analysis between LCD distributions and lake temperatures reconstructed using branched tetraether lipid distributions. The obtained regression model provides good estimates of temperatures for cultures of the family Eustigmataceae, suggesting that algae belonging to this family have an important role as a source for LCDs in lacustrine environments, or, alternatively, that the main sources of LCDs are similarly affected by temperature as the Eustigmataceae. The results suggest that LCDs may have the potential to be applicable as a palaeotemperature proxy for lacustrine environments, although further calibration work is still required.