6 resultados para DARK ENERGY MODELS
em Publishing Network for Geoscientific
Resumo:
Pliocene and Pleistocene sediments of the Oman margin and Owen Ridge are characterized by continuous alternation of light and dark layers of nannofossil ooze and marly nannofossil ooze and cyclic variation of wet-bulk density. Origin of the wet-bulk density and color cycles was examined at Ocean Drilling Program Site 722 on the Owen Ridge and Site 728 on the Oman margin using 3.4-m.y.-long GRAPE (gamma ray attenuation) wet-bulk density records and records of sediment color represented as changes in gray level on black-and-white core photographs. At Sites 722 and 728 sediments display a weak correlation of decreasing wet-bulk density with increasing darkness of sediment color. Wet-bulk density is inversely related to organic carbon concentration and displays little relation to calcium carbonate concentration, which varies inversely with the abundance of terrigenous sediment components. Sediment color darkens with increasing terrigenous sediment abundance (decreasing carbonate content) and with increasing organic carbon concentration. Upper Pleistocene sediments at Site 722 display a regular pattern of dark colored intervals coinciding with glacial periods, whereas at Site 728 the pattern of color variation is more irregular. There is not a consistent relationship between the dark intervals and their relative wet-bulk density in the upper Pleistocene sections at Sites 722 and 728, suggesting that dominance of organic matter or terrigenous sediment as primary coloring agents varies. Spectra of wet-bulk density and optical density time series display concentration of variance at orbital periodicities of 100, 41, 23, and 19 k.y. A strong 41-k.y. periodicity characterizes wet-bulk density and optical density variation at both sites throughout most of the past 3.4 m.y. Cyclicity at the 41-k.y. periodicity is characterized by a lack of coherence between wet-bulk density and optical density suggesting that the bulk density and color cycles reflect the mixed influence of varying abundance of terrigenous sediments and organic matter. The 23-k.y. periodicity in wet-bulk density and sediment color cycles is generally characterized by significant coherence between wet-bulk density and optical density, which reflects an inverse relationship between these parameters. Varying organic matter abundance, associated with changes in productivity or preservation, is inferred to more strongly influence changes in wet-bulk density and sediment color at this periodicity.
Resumo:
We compared lifetime and population energy budgets of the extraordinary long-lived ocean quahog Arctica islandica from 6 different sites - the Norwegian coast, Kattegat, Kiel Bay, White Sea, German Bight, and off northeast Iceland - covering a temperature and salinity gradient of 4-10°C (annual mean) and 25-34, respectively. Based on von Bertalanffy growth models and size-mass relationships, we computed organic matter production of body (PSB) and of shell (PSS), whereas gonad production (PG) was estimated from the seasonal cycle in mass. Respiration (R) was computed by a model driven by body mass, temperature, and site. A. islandica populations differed distinctly in maximum life span (40 y in Kiel Bay to 197 y in Iceland), but less in growth performance (phi' ranged from 2.41 in the White Sea to 2.65 in Kattegat). Individual lifetime energy throughput, as approximated by assimilation, was highest in Iceland (43,730 kJ) and lowest in the White Sea (313 kJ). Net growth efficiency ranged between 0.251 and 0.348, whereas lifetime energy investment distinctly shifted from somatic to gonad production with increasing life span; PS/PG decreased from 0.362 (Kiel Bay, 40 y) to 0.031 (Iceland, 197 y). Population annual energy budgets were derived from individual budgets and estimates of population mortality rate (0.035/y in Iceland to 0.173/y in Kiel Bay). Relationships between budget ratios were similar on the population level, albeit with more emphasis on somatic production; PS/ PG ranged from 0.196 (Iceland) to 2.728 (White Sea), and P/B ranged from 0.203-0.285/y. Life span is the principal determinant of the relationship between budget parameters, whereas temperature affects net growth efficiency only. In the White Sea population, both growth performance and net growth efficiency of A. islandica were lowest. We presume that low temperature combined with low salinity represent a particularly stressful environment for this species.
Resumo:
Precise measurements were conducted in continuous flow seawater mesocosms located in full sunlight that compared metabolic response of coral, coral-macroalgae and macroalgae systems over a diurnal cycle. Irradiance controlled net photosynthesis (Pnet), which in turn drove net calcification (Gnet), and altered pH. Pnet exerted the dominant control on [CO3]2- and aragonite saturation state (Omega arag) over the diel cycle. Dark calcification rate decreased after sunset, reaching zero near midnight followed by an increasing rate that peaked at 03:00 h. Changes in Omega arag and pH lagged behind Gnet throughout the daily cycle by two or more hours. The flux rate Pnet was the primary driver of calcification. Daytime coral metabolism rapidly removes dissolved inorganic carbon (DIC) from the bulk seawater and photosynthesis provides the energy that drives Gnet while increasing the bulk water pH. These relationships result in a correlation between Gnet and Omega arag, with Omega arag as the dependent variable. High rates of H+ efflux continued for several hours following mid-day peak Gnet suggesting that corals have difficulty in shedding waste protons as described by the Proton Flux Hypothesis. DIC flux (uptake) followed Pnet and Gnet and dropped off rapidly following peak Pnet and peak Gnet indicating that corals can cope more effectively with the problem of limited DIC supply compared to the problem of eliminating H+. Over a 24 h period the plot of total alkalinity (AT) versus DIC as well as the plot of Gnet versus Omega arag revealed a circular hysteresis pattern over the diel cycle in the coral and coral-algae mesocosms, but not the macroalgae mesocosm. Presence of macroalgae did not change Gnet of the corals, but altered the relationship between Omega arag and Gnet. Predictive models of how future global changes will effect coral growth that are based on oceanic Omega arag must include the influence of future localized Pnet on Gnet and changes in rate of reef carbonate dissolution. The correlation between Omega arag and Gnet over the diel cycle is simply the response of the CO2-carbonate system to increased pH as photosynthesis shifts the equilibria and increases the [CO3]2- relative to the other DIC components of [HCO3]- and [CO2]. Therefore Omega arag closely tracked pH as an effect of changes in Pnet, which also drove changes in Gnet. Measurements of DIC flux and H+ flux are far more useful than concentrations in describing coral metabolism dynamics. Coral reefs are systems that exist in constant disequilibrium with the water column.
Resumo:
I developed a new model for estimating annual production-to-biomass ratio P/B and production P of macrobenthic populations in marine and freshwater habitats. Self-learning artificial neural networks (ANN) were used to model the relationships between P/B and twenty easy-to-measure abiotic and biotic parameters in 1252 data sets of population production. Based on log-transformed data, the final predictive model estimates log(P/B) with reasonable accuracy and precision (r2 = 0.801; residual mean square RMS = 0.083). Body mass and water temperature contributed most to the explanatory power of the model. However, as with all least squares models using nonlinearly transformed data, back-transformation to natural scale introduces a bias in the model predictions, i.e., an underestimation of P/B (and P). When estimating production of assemblages of populations by adding up population estimates, accuracy decreases but precision increases with the number of populations in the assemblage.