26 resultados para Cylindrical Mesopores

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mesozooplankton is collected by vertical tows within the Black sea water body mass layer in the NE Aegean, using a WP-2 200 µm net equipped with a large non-filtering cod-end (10 l). Macrozooplankton organisms are removed using a 2000 µm net. A few unsorted animals (approximately 100) are placed inside several glass beaker of 250 ml filled with GF/F or 0.2 µm Nucleopore filtered seawater and with a 100 µm net placed 1 cm above the beaker bottom. Beakers are then placed in an incubator at natural light and maintaining the in situ temperature. After 1 hour pellets are separated from animals and placed in separated flasks and preserved with formalin. Pellets are counted and measured using an inverted microscope. Animals are scanned and counted using an image analysis system. Carbon- Specific faecal pellet production is calculated from a) faecal pellet production, b) individual carbon: Animals are scanned and their body area is measured using an image analysis system. Body volume is then calculated as an ellipsoid using the major and minor axis of an ellipse of same area as the body. Individual carbon is calculated from a carbon- total body volume of organisms (relationship obtained for the Mediterranean Sea by Alcaraz et al. (2003) divided by the total number of individuals scanned and c) faecal pellet carbon: Faecal pellet length and width is measured using an inverted microscope. Faecal pellet volume is calculated from length and width assuming cylindrical shape. Conversion of faecal pellet volume to carbon is done using values obtained in the Mediterranean from: a) faecal pellet density 1,29 g cm**3 (or pg µm**3) from Komar et al. (1981); b) faecal pellet DW/WW=0,23 from Elder and Fowler (1977) and c) faecal pellet C%DW=25,5 Marty et al. (1994).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several widely correlatable intervals of laminated Thalassiothrix diatom mat deposits occur in Neogene sediments recovered from the eastern equatorial Pacific Ocean. The presence of laminated sediments in extensive areas of the deep open ocean floor raises fundamental questions concerning the cause of preservation of the laminations and the nature of the benthic environment during episodes of mat deposition. Traditional explanations for the preservation of laminations have centered on restriction of dissolved oxygen. Studies of benthic foraminifers through the laminated intervals show no evidence for an increase in absolute or relative abundance of species characteristic of a low oxygen environment, but rather a decrease in relative abundance of infaunal forms attesting to the impenetrability of the diatom meshwork formed by the interlocking Thalassiothrix frustules. These results support evidence from coring of the high tensile strength of the Thalassiothrix laminations suggesting that the diatom meshwork was of sufficient tensile strength and impenetrability to suppress infaunal benthic activity. Comparison of the relative abundances of foraminifers in the enclosing ôbackgroundö sediment of foraminifer nannofossil ooze and the laminated diatom oozes shows that some epifaunal species (e.g., Cibicides spp.) increase in relative abundance within the laminated sediment, whereas others (e.g., Epistominella exigua) show a marked decrease in relative abundance. Other species show more complex changes in abundance related to the occurrence of the laminated sediments, which may indicate a combination of controls that include the physical nature of the substrate and the amount of organic flux.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Because zooplankton feces represent a potentially important transport pathway of surface-derived organic carbon in the ocean, we must understand the patterns of fecal pellet abundance and carbon mobilization over a variety of spatial and temporal scales. To assess depth-specific water column variations of fecal pellets on a seasonal scale, vertical fluxes of zooplankton fecal pellets were quantified and their contribution to mass and particulate carbon were computed during 1990 at 200, 500, 1000, and 2000 m depths in the open northwestern Mediterranean Sea as part of the French-JGOFS DYFAMED Program. Depth-averaged daily fecal pellet flux was temporally variable, ranging from 3.04 * 10**4 pellets m**2/d in May to a low of 6.98 * 10**2 pellets m**2/d in September. The peak flux accounted for 50% of the integrated annual flux of fecal pellets and 62% of pellet carbon during only two months in mid-spring (April and May). Highest numerical fluxes were encountered at 1000 m, suggesting fecal pellet generation well below the euphotic zone. However, there was a trend toward lower pellet carbon with increasing depth, suggesting bacterial degradation or in situ repackaging as pellets sink through the water column. At 500 m, both the lowest pellet numerical abundance and carbon flux were evident during the spring peak. Combined with data indicating that numerical and carbon fluxes are dominated at 500 m by a distinct type of pellet found uniquely at this depth, these trends suggest the presence of an undescribed mid-water macro-zooplankton or micro-nekton community. Fecal pellet carbon flux was highest at 200 m and varied with depth independently of overall particulate carbon, which was greatest at 500 m. Morphologically distinct types of pellets dominated the numerical and carbon fluxes. Small elliptical and spherical pellets accounted for 88% of the numerical flux, while larger cylindrical pellets, although relatively rare (<10%), accounted for almost 40% of the overall pellet carbon flux. Cylindrical pellets dominated the pellet carbon flux at all depths except 500 m, where a large subtype of elliptical pellet, found only at that depth, was responsible for the majority of pellet carbon flux. Overall during 1990, fecal pellets were responsible for a depth-integrated annual average flux of 1.03 mgC/m**2/d, representing 18% of the total carbon flux. The proportion of vertical carbon flux attributed to fecal pellets varied from 3 to 35%, with higher values occurring during periods when the water column was vertically mixed. Especially during these times, fecal pellets are a critical conveyor of carbon to the deep sea in this region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nearly complete Paleogene sedimentary sequences were recovered by Leg 114 to the subantarctic South Atlantic. Silicoflagellate assemblages from the Paleogene and immediately overlying lower Neogene from Sites 698 (Northeast Georgia Rise), 700 (East Georgia Basin), 702 (Islas Orcadas Rise), and 703 (Meteor Rise) were examined. The described assemblage from Hole 700B represents the most complete yet described from the Paleocene, encompassing planktonic foraminifer Zones Plb (upper part) through P4 and Subchrons C25N to C23N. All lower Eocene sediments are barren as a result of diagenesis, except for a single sample from Hole 698A. Middle Eocene silicoflagellates described from Hole 702B range in age from early middle Eocene (P10) to late Eocene (PI5), with correlations to Subchrons C21N to C18N. Hole 703A contains late Eocene through early Miocene assemblages, with paleomagnetic control from Subchrons C16R to C6AAN. Leg 114 biosiliceous sequences contain exceptionally diverse assemblages of silicoflagellates. Approximately 155 species and separate morphotypes are described from the Paleogene and earliest Neogene. New taxa described from Leg 114 sediments include Bachmannocena vetula n. sp., Corbisema animoparallela n. sp., Corbisema camara n. sp., Corbisema constricta spinosa n. subsp., Corbisema delicata n. sp., Corbisema hastata aha n. subsp., Corbisema praedelicata n. sp., Corbisema scapana n. sp., Corbisema triacantha lepidospinosa n. subsp., Dictyocha deflandreifurtivia n. subsp., Naviculopsis biapiculata nodulifera n. subsp., Naviculopsis cruciata n. sp., Naviculopsis pandalata n. sp., Naviculopsis primativa n. sp., and Naviculopsis trispinosa eminula n. subsp. Taxonomic revisions were made to the following taxa: Corbisema constricta constricta emended, Corbisema disymmetrica crenulata n. comb., Corbisema jerseyensis emended, and Distephanus antarcticus n. comb. Silicoflagellate assemblages from the Paleogene and earliest Neogene of Holes 698A, 699A, 700B, 702B, and 703A are the basis of a silicoflagellate zonation spanning the interval from 63.2 to 22.25 Ma. Silicoflagellate zones recognized in this interval include the Corbisema hastata hastata Zone, Corbisema hastata aha Zone, Dictyocha precarentis Zone, Naviculopsis constricta Zone, Naviculopsis foliacea Zone, Bachmannocena vetula Zone, Dictyocha grandis Zone, Naviculopsis pandalata Zone, Naviculopsis constricta-Bachmannocena paulschulzii Zone, Bachmannocena paulschulzii Zone, Naviculopsis trispinosa Zone with subzones a and b, Corbisema archangelskiana Zone, Naviculopsis biapiculata Zone, Distephanus raupii Zone, Distephanus raupii-Corbisema triacantha Zone, and Corbisema triacantha mediana Zone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Benthic foraminiferal faunas from three bathyal sequences provide a proxy record of oceanographic changes through the mid-Pleistocene transition (MPT) on either side of the Subtropical Front (STF), east of New Zealand. Canonical correspondence analyses show that factors related to water depth, latitude and climate cycles were more significant than oceanographic factors in determining changes in faunal assemblage composition over the last 1 Ma. Even so, mid-Pleistocene faunal changes are recognizable and can be linked to inferred palaeoceanographic causes. North of the largely stationary STF the faunas were less variable than to the south, perhaps reflecting the less extreme glacial-interglacial fluctuations in the overlying Subtropical Surface Water. Prior to Marine Isotope Stage (MIS) 21 and after MIS 15, the northern faunas had fairly constant composition, but during most of the MPT faunal composition fluctuated in response to climate-related food-supply variations. Faunal changes through the MPT suggest increasing food supply and decreasing dissolved bottom oxygen. South of the STF, beneath Subantarctic Surface Water, mid-Pleistocene faunas exhibited strong glacial-interglacial fluctuations, inferred to be due to higher interglacial nutrient supply and lower oxygen levels. The most dramatic faunal change in the south occurred at the end of the MPT (MIS 17- 12). with an acme of Abditodentrix pseudothalmanni, possibly reflecting higher carbon flux and lower bottom oxygen. This study suggests that the mid-Pleistocene decline and extinction of a group of elongate, cylindrical deep-sea foraminifera may have been related to decreased bottom oxygen concentrations as aresult of slower deep-water currents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nodules occur in the siliceous calcareous ooze and siliceous marl at Site 503 in the eastern equatorial Pacific. They are present below a depth of about 11 meters throughout the green-colored reduced part of the section down to 228 meters, although they are most abundant between 30 and 85 meters. They are cylindrical or barrel-shaped, up to 70 mm long, and usually have an axial channel through them or are hollow. They appear to have formed around and/or within burrows. XRD studies and microprobe analyses show that they are homogeneous and consist of calcian rhododrosite and minor calcite; Mn is present to the extent of about 30%. Isotopic analyses of the carbonate give carbon values which range from -1.2 per mil to -3.8 per mil, and oxygen isotope compositions vary from +4.0 per mil to +6.0 per mil. These values are different from those for marine-derived carbonates as exemplified by the soft sediment filling of a burrow: d13C, -0.26 per mil; d18O, +1.05 per mil. The carbon isotope data indicate that carbonate derived (possibly indirectly) from seawater was mixed with some produced by organic diagenesis to form the nodules. The d18O values suggest that although they formed near the sediment surface, some modification or the introduction of additional diagenetic carbonate occurred during burial.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the late Pliocene-middle Pleistocene a group of 95 species of elongate, cylindrical, deep-sea (lower bathyal-abyssal) benthic foraminifera became extinct. This Extinction Group (Ext. Gp), belonging to three families (all the Stilostomellidae and Pleurostomellidae, some of the Nodosariidae), was a major component (20-70%) of deep-sea foraminiferal assemblages in the middle Cenozoic and subsequently declined in abundance and species richness before finally disappearing almost completely during the mid-Pleistocene Climatic Transition (MPT). So what caused these declines and extinction? In this study 127 Ext. Gp species are identified from eight Cenozoic bathyal and abyssal sequences in the North Atlantic and equatorial Pacific Oceans. Most species are long-ranging with 80% originating in the Eocene or earlier. The greatest abundance and diversity of the Ext. Gp was in the warm oceanic conditions of the middle Eocene-early Oligocene. The group was subjected to significant changes in the composition of the faunal dominants and slightly enhanced species turnover during and soon after the rapid Eocene-Oligocene cooling event. Declines in the relative abundance and flux of the Ext. Gp, together with enhanced species loss, occurred during middle-late Miocene cooling, particularly at abyssal sites. The overall number of Ext. Gp species present began declining earlier at mid abyssal depths (in middle Miocene) than at upper abyssal (in late Pliocene-early Pleistocene) and then lower bathyal depths (in MPT). By far the most significant Ext. Gp declines in abundance and species loss occurred during the more severe glacial stages of the late Pliocene-middle Pleistocene. Clearly, the decline and extinction of this group of deep-sea foraminifera was related to the function of their specialized apertures and the stepwise cooling of global climate and deep water. We infer that the apertural modifications may be related to the method of food collection or processing, and that the extinctions may have resulted from the decline or loss of their specific phytoplankton or prokaryote food source, that was more directly impacted than the foraminifera by the cooling temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The SES_UNLUATA_GR1-Mesozooplankton faecal pellet production rates dataset is based on samples taken during March and April 2008 in the Northern Libyan Sea, Southern Aegean Sea and in the North-Eastern Aegean Sea. Mesozooplankton is collected by vertical tows within the 0-100 m layer or within the Black sea water body mass layer in the case of the NE Aegean, using a WP-2 200 µm net equipped with a large non-filtering cod-end (10 l). Macrozooplankton organisms are removed using a 2000 µm net. A few unsorted animals (approximately 100) are placed inside several glass beaker of 250 ml filled with GF/F or 0.2 µm Nucleopore filtered seawater and with a 100 µm net placed 1 cm above the beaker bottom. Beakers are then placed in an incubator at natural light and maintaining the in situ temperature. After 1 hour pellets are separated from animals and placed in separated flasks and preserved with formalin. Pellets and are counted and measured using an inverted microscope. Animals are scanned and counted using an image analysis system. Carbon- Specific faecal pellet production is calculated from a) faecal pellet production, b) individual carbon: Animals are scanned and their body area is measured using an image analysis system. Body volume is then calculated as an ellipsoid using the major and minor axis of an ellipse of same area as the body. Individual carbon is calculated from a carbon- total body volume of organisms (relationship obtained for the Mediterranean Sea by Alcaraz et al. (2003) divided by the total number of individuals scanned and c) faecal pellet carbon: Faecal pellet length and width is measured using an inverted microscope. Faecal pellet volume is calculated from length and width assuming cylindrical shape. Conversion of faecal pellet volume to carbon is done using values obtained in the Mediterranean from: a) faecal pellet density 1,29 g cm**3 (or pg µm**3) from Komar et al. (1981); b) faecal pellet DW/WW=0,23 from Elder and Fowler (1977) and c) faecal pellet C%DW=25,5 Marty et al. (1994).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The SES_GR2-Mesozooplankton faecal pellet production rates dataset is based on samples taken during August and September 2008 in the Northern Libyan Sea, Southern Aegean Sea and the North-Eastern Aegean Sea. Mesozooplankton is collected by vertical tows within the 0-100 m layer or within the Black sea water body mass layer in the case of the NE Aegean, using a WP-2 200 µm net equipped with a large non-filtering cod-end (10 l). Macrozooplankton organisms are removed using a 2000 µm net. A few unsorted animals (approximately 100) are placed inside several glass beaker of 250 ml filled with GF/F or 0.2 µm Nucleopore filtered seawater and with a 100 µm net placed 1 cm above the beaker bottom. Beakers are then placed in an incubator at natural light and maintaining the in situ temperature. After 1 hour pellets are separated from animals and placed in separated flasks and preserved with formalin. Pellets are counted and measured using an inverted microscope. Animals are scanned and counted using an image analysis system. Carbon- Specific faecal pellet production is calculated from a) faecal pellet production, b) individual carbon: Animals are scanned and their body area is measured using an image analysis system. Body volume is then calculated as an ellipsoid using the major and minor axis of an ellipse of same area as the body. Individual carbon is calculated from a carbon- total body volume of organisms (relationship obtained for the Mediterranean Sea by Alcaraz et al. (2003) divided by the total number of individuals scanned and c) faecal pellet carbon: Faecal pellet length and width is measured using an inverted microscope. Faecal pellet volume is calculated from length and width assuming cylindrical shape. Conversion of faecal pellet volume to carbon is done using values obtained in the Mediterranean from: a) faecal pellet density 1,29 g cm**3 (or pg µm**3) from Komar et al. (1981); b) faecal pellet DW/WW=0,23 from Elder and Fowler (1977) and c) faecal pellet C%DW=25,5 Marty et al. (1994).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The SES_GR1-Mesozooplankton faecal pellet production rates dataset is based on samples taken during April 2008 in the North-Eastern Aegean Sea. Mesozooplankton is collected by vertical tows within the Black sea water body mass layer in the NE Aegean, using a WP-2 200 µm net equipped with a large non-filtering cod-end (10 l). Macrozooplankton organisms are removed using a 2000 µm net. A few unsorted animals (approximately 100) are placed inside several glass beaker of 250 ml filled with GF/F or 0.2 µm Nucleopore filtered seawater and with a 100 µm net placed 1 cm above the beaker bottom. Beakers are then placed in an incubator at natural light and maintaining the in situ temperature. After 1 hour pellets are separated from animals and placed in separated flasks and preserved with formalin. Pellets are counted and measured using an inverted microscope. Animals are scanned and counted using an image analysis system. Carbon- Specific faecal pellet production is calculated from a) faecal pellet production, b) individual carbon: Animals are scanned and their body area is measured using an image analysis system. Body volume is then calculated as an ellipsoid using the major and minor axis of an ellipse of same area as the body. Individual carbon is calculated from a carbon- total body volume of organisms (relationship obtained for the Mediterranean Sea by Alcaraz et al. (2003) divided by the total number of individuals scanned and c) faecal pellet carbon: Faecal pellet length and width is measured using an inverted microscope. Faecal pellet volume is calculated from length and width assuming cylindrical shape. Conversion of faecal pellet volume to carbon is done using values obtained in the Mediterranean from: a) faecal pellet density 1,29 g cm**3 (or pg µm**3) from Komar et al. (1981); b) faecal pellet DW/WW=0,23 from Elder and Fowler (1977) and c) faecal pellet C%DW=25,5 Marty et al. (1994).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In September 1999 two short-term moorings with cylindrical sediment traps were deployed to collect sinking particles in bottom waters off the Ob and Yenisei river mouths. Samples were studied for their bulk composition, pigments, phytoplankton, microzooplankton, fecal material, amino acids, hexosamines, fatty acids and sterols and compared to suspended matter and surface sediments in order to collect information about the nature and cycling of particulate matter in the water column. Results of all measured components in sinking particles point to an ongoing seasonality in the pelagic system from blooming diatoms in the first phase to a more retention system in the second half of trap deployment. Due to a phytoplankton bloom observed north of the Ob estuary, flux rates were generally higher in the trap deployed off the Ob than off the Yenisei. The Ob trap collected fresh surface-derived particulate matter. Particles from the Yenisei trap were more degraded and resembled deep water suspension. This material may partly have been derived from resuspended sediments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Late Campanian and Maastrichtian benthic foraminifers are recorded from 12 samples from Ocean Drilling Program (ODP) Leg 183, Cores 183-1138A-52R through 63R (487.3-602.4 meters below seafloor), Kerguelen Plateau, Indian Ocean, and Danian benthics from one sample in the same section. The entire late Maastrichtian foraminifer fauna is noted from a dredge sample 220 km to the north. The structure of the fauna is compared with the Cenomanian-Turonian of the nearby Eltanin core E54-7. Faunas are reviewed in terms of planktonic percentage, composition, epifaunal/infaunal ratios, and dominance/diversity indices. The region was in the cool Austral Faunal Province through the Campanian-Maastrichtian and was probably warmer in the Cenomanian-Turonian. The ODP section is now 1600 meters below sea level and has subsided several hundred meters since deposition. Its fauna is dominated by epifaunal species suggesting little influence of upwelling. The dredge location has subsided little. Its fauna has a high infaunal content consistent with significant influence of upwelling near the plateau edge. The dominant benthic species remain constant through the ODP Cretaceous section, but subdominance changes, and the section is divided into three informal zones based on dominance/subdominance characteristics of the benthic fauna. Brief taxonomic comments are made on several species and some are figured.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increasing catalogue of high-quality ice-penetrating radar data provides a unique insight in the internal layering architecture of the Greenland ice sheet. The stratigraphy, an indicator of past deformation, highlights irregularities in ice flow and reveals large perturbations without obvious links to bedrock shape. In this work, to establish a new conceptual model for the formation process, we analysed the radar data at the onset of the Petermann Glacier, North Greenland, and created a three-dimensional model of several distinct stratigraphic layers. We demonstrate that the dominant structures are cylindrical folds sub-parallel to the ice flow. By numerical modelling, we show that these folds can be formed by lateral compression of mechanically anisotropic ice, while a general viscosity contrast between layers would not lead to folding for the same boundary conditions. We conclude that the folds primarily form by converging flow as the mechanically anisotropic ice is channelled towards the glacier.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study describes quantitatively the macrozoobenthic community structure in intertidal of the Island Algodoal-Maiandeua in the Northern Brazilian state of Pará, which is part of a protected area since 1990. Samples of the epi-and endomacrobenthos of the unconsolidated substrate were collected in October 2012, using a PVC cylindrical corer with a surface area of 60 square centimeter at a depth of 30 cm, along three transects located perpendicular to the coastline, separated by intervals of 50 m. Collected material was sieved on a 1 mm mesh, specimens were fixed in 4% formaldehyde buffered with borax. In Tropical Benthic Ecology laboratory macroinvertebrates were washed with 70% alcohol and afterwards identified with a stereomicroscope and specific literature.