3 resultados para Crossed Classification Models

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The geometries of a catchment constitute the basis for distributed physically based numerical modeling of different geoscientific disciplines. In this paper results from ground-penetrating radar (GPR) measurements, in terms of a 3D model of total sediment thickness and active layer thickness in a periglacial catchment in western Greenland, is presented. Using the topography, thickness and distribution of sediments is calculated. Vegetation classification and GPR measurements are used to scale active layer thickness from local measurements to catchment scale models. Annual maximum active layer thickness varies from 0.3 m in wetlands to 2.0 m in barren areas and areas of exposed bedrock. Maximum sediment thickness is estimated to be 12.3 m in the major valleys of the catchment. A method to correlate surface vegetation with active layer thickness is also presented. By using relatively simple methods, such as probing and vegetation classification, it is possible to upscale local point measurements to catchment scale models, in areas where the upper subsurface is relatively homogenous. The resulting spatial model of active layer thickness can be used in combination with the sediment model as a geometrical input to further studies of subsurface mass-transport and hydrological flow paths in the periglacial catchment through numerical modelling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The terrigenous sediment proportion of the deep sea sediments from off Northwest Africa has been studied in order to distinguish between the aeolian and the fluvial sediment supply. The present and fossil Saharan dust trajectories were recognized from the distribution patterns of the aeolian sediment. The following timeslices have been investigated: Present, 6,000, 12,000 and 18,000 y. B. P. Furthermore, the quantity of dust deposited off the Saharan coast has been estimated. For this purpose, 80 surface sediment samples and 34 sediment cores have been analysed. The stratigraphy of the cores has been achieved from oxygen isotopic curves, 14C-dating, foraminiferal transfer temperatures, and carbonate contents. Silt sized biogenic opal generally accounts for less than 2 % of the total insoluble sediment proportion. Only under productive upwelling waters and off river mouths, the opal proportion exceeds 2 % significantly. The modern terrigenous sediment from off the Saharan coast is generally characterized by intensely stained quartz grains. They indicate an origin from southern Saharan and Sahelian laterites, and a zonal aeolian transport in midtropospheric levels, between 1.5 an 5.5 km, by 'Harmattan' Winds. The dust particles follow large outbreaks of Saharan air across the African coast between 15° and 21° N. Their trajectories are centered at about 18° N and continue further into a clockwise gyre situated south of the Canary Islands. This course is indicated by a sickle-shaped tongue of coarser grain sizes in the deep-sea sediment. Such loess-sized terrigenous particles only settle within a zone extending to 700 km offshore. Fine silt and clay sized particles, with grain sizes smaller than 10- 15 µm, drift still further west and can be traced up to more than 4,000 km distance from their source areas. Additional terrigenous silt which is poor in stained quartz occurs within a narrow zone off the western Sahara between 20° and 27° N only. It depicts the present dust supply by the trade winds close to the surface. The dust load originates from the northwestern Sahara, the Atlas Mountains and coastal areas, which contain a particularly low amount of stained quartz. The distribution pattern of these pale quartz sediments reveals a SSW-dispersal of dust being consistent with the present trade wind direction from the NNE. In comparison to the sediments from off the Sahara and the deeper subtropical Atlantic, the sediments off river mouths, in particular off the Senegal river, are characterized by an additional input of fine grained terrigenous particles (< 6 µm). This is due to fluvial suspension load. The fluvial discharge leads to a relative excess of fine grained particles and is observed in a correlation diagram of the modal grain sizes of terrigenous silt with the proportion of fine fraction (< 6 µm). The aeolian sediment contribution by the Harmattan Winds strongly decreased during the Climatic Optimum at 6,000 y. B. P. The dust discharge of the trade winds is hardly detectable in the deep-sea sediments. This probably indicates a weakened atmospheric circulation. In contrast, the fluvial sediment supply reached a maximum, and can be traced to beyond Cape Blanc. Thus, the Saharan climate was more humid at 6,000 y B. P. A latitudinal shift of the Harmattan driven dust outbreaks cannot be observed. Also during the Glacial, 18,000 y. B. P., Harmattan dust transport crossed the African coast at latitudes of 15°-20° N. Its sediment load increased intensively, and markedly coarser grains spread further into the Atlantic Ocean. An expanded zone of pale-quart sediments indicates an enhanced dust supply by the trade winds blowing from the NE. No synglacial fluvial sediment contribution can be recognized between 12° and 30° N. This indicates a dry glacial climate and a strengthened stmospheric circulation over the Sahelian and Saharan region. The climatic transition pahes, at 12, 000 y. B. P., between the last Glacial and the Intergalcial, which is compareable to the Alerod in Europe, is characterized by an intermediate supply of terrigenous particles. The Harmattan dust transport wa weaker than during the Glacial. The northeasterly trade winds were still intensive. River supply reached a first postglacial maximum seaward of the Senegal river mouth. This indicates increasing humidity over the southern Sahara and a weaker atmospheric circulation as compared to the glacial. The accumulation rates of the terrigenous silt proportion (> 6 µm) decrcase exponentially with increasing distance from the Saharan coast. Those of the terrigenous fine fraction (< 6 µm) follow the same trend and show almost similar gradients. Accordingly, also the terrigenous fine fraction is believed to result predominantly from aeolian transport. In the Atlantic deep-sea sediments, the annual terrigenous sediment accumulation has fluctuated, from about 60 million tons p. a. during the Late Glacial (13,500-18,000 y. B. P, aeolian supply only) to about 33 million tons p. a. during the Holocene Climatic Optimum (6,000-9,000 y. B. P, mainly fluvial supply), when the river supply has reached a maximum, and to about 45 million tons p. a. during the last 4,000 years B. P. (fluvial supply only south of 18° N).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ignoring small-scale heterogeneities in Arctic land cover may bias estimates of water, heat and carbon fluxes in large-scale climate and ecosystem models. We investigated subpixel-scale heterogeneity in CHRIS/PROBA and Landsat-7 ETM+ satellite imagery over ice-wedge polygonal tundra in the Lena Delta of Siberia, and the associated implications for evapotranspiration (ET) estimation. Field measurements were combined with aerial and satellite data to link fine-scale (0.3 m resolution) with coarse-scale (upto 30 m resolution) land cover data. A large portion of the total wet tundra (80%) and water body area (30%) appeared in the form of patches less than 0.1 ha in size, which could not be resolved with satellite data. Wet tundra and small water bodies represented about half of the total ET in summer. Their contribution was reduced to 20% in fall, during which ET rates from dry tundra were highest instead. Inclusion of subpixel-scale water bodies increased the total water surface area of the Lena Delta from 13% to 20%. The actual land/water proportions within each composite satellite pixel was best captured with Landsat data using a statistical downscaling approach, which is recommended for reliable large-scale modelling of water, heat and carbon exchange from permafrost landscapes.