11 resultados para Cross-validation

em Publishing Network for Geoscientific


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Molecular methods provide promising tools for routine detection and quantification of toxic microalgae in plankton samples. To this end, novel TaqMan minor groove binding probes and primers targeting the small (SSU) or large (LSU) ribosomal subunit (rRNA) were developed for two species of the marine dinoflagellate genus Alexandrium (A. minutum, A. tamutum) and for three groups/ribotypes of the A. tamarense species complex: Group I/North American (NA), Group II/Mediterranean (ME) and Group III/Western European (WE). Primers and probes for real-time quantitative PCR (qPCR) were species-specific and highly efficient when tested in qPCR assays for cross-validation with pure DNA from cultured Alexandrium strains. Suitability of the qPCR assays as molecular tools for the detection and estimation of relative cell abundances of Alexandrium species and groups was evaluated from samples of natural plankton assemblages along the Scottish east coast. The results were compared with inverted microscope cell counts (Utermöhl technique) of Alexandrium spp. and associated paralytic shellfish poisoning (PSP) toxin concentrations. The qPCR assays indicated that A. tamarense (Group I) and A. tamutum were the most abundant Alexandrium taxa and both were highly positively correlated with PSP toxin content of plankton samples. Cells of A. tamarense (Group III) were present at nearly all stations but in low abundance. Alexandrium minutum and A. tamarense (Group II) cells were not detected in any of the samples, thereby arguing for their absence from the specific North Sea region, at least at the time of the survey. The sympatric occurrence of A. tamarense Group I and Group III gives further support to the hypothesis that the groups/ribotypes of the A. tamarense species complex are cryptic species rather than variants belonging to the same species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Secchi depth is a measure of water transparency. In the Baltic Sea region, Secchi depth maps are used to assess eutrophication and as input for habitat models. Due to their spatial and temporal coverage, satellite data would be the most suitable data source for such maps. But the Baltic Sea's optical properties are so different from the open ocean that globally calibrated standard models suffer from large errors. Regional predictive models that take the Baltic Sea's special optical properties into account are thus needed. This paper tests how accurately generalized linear models (GLMs) and generalized additive models (GAMs) with MODIS/Aqua and auxiliary data as inputs can predict Secchi depth at a regional scale. It uses cross-validation to test the prediction accuracy of hundreds of GAMs and GLMs with up to 5 input variables. A GAM with 3 input variables (chlorophyll a, remote sensing reflectance at 678 nm, and long-term mean salinity) made the most accurate predictions. Tested against field observations not used for model selection and calibration, the best model's mean absolute error (MAE) for daily predictions was 1.07 m (22%), more than 50% lower than for other publicly available Baltic Sea Secchi depth maps. The MAE for predicting monthly averages was 0.86 m (15%). Thus, the proposed model selection process was able to find a regional model with good prediction accuracy. It could be useful to find predictive models for environmental variables other than Secchi depth, using data from other satellite sensors, and for other regions where non-standard remote sensing models are needed for prediction and mapping. Annual and monthly mean Secchi depth maps for 2003-2012 come with this paper as Supplementary materials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The morphology of ~45,000 bedforms from 13 multibeam bathymetry surveys was used as a proxy for identifying net bedload sediment transport directions and pathways throughout the San Francisco Bay estuary and adjacent outer coast. The spatially-averaged shape asymmetry of the bedforms reveals distinct pathways of ebb and flood transport. Additionally, the region-wide, ebb-oriented asymmetry of 5% suggests net seaward-directed transport within the estuarine-coastal system, with significant seaward asymmetry at the mouth of San Francisco Bay (11%), through the northern reaches of the Bay (7-8%), and among the largest bedforms (21% for lambda > 50 m). This general indication for the net transport of sand to the open coast strongly suggests that anthropogenic removal of sediment from the estuary, particularly along clearly defined seaward transport pathways, will limit the supply of sand to chronically eroding, open-coast beaches. The bedform asymmetry measurements significantly agree (up to ~ 76%) with modeled annual residual transport directions derived from a hydrodynamically-calibrated numerical model, and the orientation of adjacent, flow-sculpted seafloor features such as mega-flute structures, providing a comprehensive validation of the technique. The methods described in this paper to determine well-defined, cross-validated sediment transport pathways can be applied to estuarine-coastal systems globally where bedforms are present. The results can inform and improve regional sediment management practices to more efficiently utilize often limited sediment resources and mitigate current and future sediment supply-related impacts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The eruption of Eyjafjallajökull volcano in 2010 lasted for 39 days, 14 April-23 May. The eruption had two explosive phases separated by a phase with lava formation and reduced explosive activity. The height of the plume was monitored every 5 min with a C-band weather radar located in Keflavík International Airport, 155 km distance from the volcano. Furthermore, several web cameras were mounted with a view of the volcano, and their images saved every five seconds. Time series of the plume-top altitude were constructed from the radar observations and images from a web camera located in the village Hvolsvöllur at 34 km distance from the volcano. This paper presents the independent radar and web camera time series and performs cross validation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present data set was used as a training set for a Habitat Suitability Model. It contains occurrence (presence-only) of living Lophelia pertusa reefs in the Irish continental margin, which were assembled from databases, cruise reports and publications. A total of 4423 records were inspected and quality assessed to ensure that they (1) represented confirmed living L. pertusa reefs (so excluding 2900 records of dead and isolated coral colony records); (2) were derived from sampling equipment that allows for accurate (<200 m) geo-referencing (so excluding 620 records derived mainly from trawling and dredging activities); and (3) were not duplicated. A total of 245 occurrences were retained for the analysis. Coral observations are highly clustered in regions targeted by research expeditions, which might lead to falsely inflated model evaluation measures (Veloz, 2009). Therefore, we coarsened the distribution data by deleting all but one record within grid cells of 0.02° resolution (Davies & Guinotte 2011). The remaining 53 points were subject to a spatial cross-validation process: a random presence point was chosen, grouped with its 12 closest neighbour presence points based on Euclidean distance and withheld from model training. This process was repeated for all records, resulting in 53 replicates of spatially non-overlapping sets of test (n=13) and training (n=40) data. The final 53 occurrence records were used for model training.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The composition and abundance of algal pigments provide information on phytoplankton community characteristics such as photoacclimation, overall biomass and taxonomic composition. In particular, pigments play a major role in photoprotection and in the light-driven part of photosynthesis. Most phytoplankton pigments can be measured by high-performance liquid chromatography (HPLC) techniques applied to filtered water samples. This method, as well as other laboratory analyses, is time consuming and therefore limits the number of samples that can be processed in a given time. In order to receive information on phytoplankton pigment composition with a higher temporal and spatial resolution, we have developed a method to assess pigment concentrations from continuous optical measurements. The method applies an empirical orthogonal function (EOF) analysis to remote-sensing reflectance data derived from ship-based hyperspectral underwater radiometry and from multispectral satellite data (using the Medium Resolution Imaging Spectrometer - MERIS - Polymer product developed by Steinmetz et al., 2011, doi:10.1364/OE.19.009783) measured in the Atlantic Ocean. Subsequently we developed multiple linear regression models with measured (collocated) pigment concentrations as the response variable and EOF loadings as predictor variables. The model results show that surface concentrations of a suite of pigments and pigment groups can be well predicted from the ship-based reflectance measurements, even when only a multispectral resolution is chosen (i.e., eight bands, similar to those used by MERIS). Based on the MERIS reflectance data, concentrations of total and monovinyl chlorophyll a and the groups of photoprotective and photosynthetic carotenoids can be predicted with high quality. As a demonstration of the utility of the approach, the fitted model based on satellite reflectance data as input was applied to 1 month of MERIS Polymer data to predict the concentration of those pigment groups for the whole eastern tropical Atlantic area. Bootstrapping explorations of cross-validation error indicate that the method can produce reliable predictions with relatively small data sets (e.g., < 50 collocated values of reflectance and pigment concentration). The method allows for the derivation of time series from continuous reflectance data of various pigment groups at various regions, which can be used to study variability and change of phytoplankton composition and photophysiology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A number of studies have shown that Fourier transform infrared spectroscopy (FTIR) can be applied to quantitatively assess lacustrine sediment constituents. In this study, we developed calibration models based on FTIR for the quantitative determination of biogenic silica (BSi; n = 420; gradient: 0.9-56.5%), total organic carbon (TOC; n = 309; gradient: 0-2.9%), and total inorganic carbon (TIC; n= 152; gradient: 0-0.4%) in a 318 m-long sediment record with a basal age of 3.6 million years from Lake El'gygytgyn, Far East Russian Arctic. The developed partial least squares (PLS) regression models yield high cross-validated (CV) R2CV = 0.86-0.91 and low root mean square error of cross-validation (RMSECV) (3.1-7.0% of the gradient for the different properties). By applying these models to 6771 samples from the entire sediment record, we obtained detailed insight into bioproductivity variations in Lake El'gygytgyn throughout the middle to late Pliocene and Quaternary. High accumulation rates of BSi indicate a productivity maximum during the middle Pliocene (3.6-3.3 Ma), followed by gradually decreasing rates during the late Pliocene and Quaternary. The average BSi accumulation during the middle Pliocene was ~3 times higher than maximum accumulation rates during the past 1.5 million years. The indicated progressive deterioration of environmental and climatic conditions in the Siberian Arctic starting at ca. 3.3 Ma is consistent with the first occurrence of glacial periods and the finally complete establishment of glacial-interglacial cycles during the Quaternary.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

River runoff is an essential climate variable as it is directly linked to the terrestrial water balance and controls a wide range of climatological and ecological processes. Despite its scientific and societal importance, there are to date no pan-European observation-based runoff estimates available. Here we employ a recently developed methodology to estimate monthly runoff rates on regular spatial grid in Europe. For this we first assemble an unprecedented collection of river flow observations, combining information from three distinct data bases. Observed monthly runoff rates are first tested for homogeneity and then related to gridded atmospheric variables (E-OBS version 12) using machine learning. The resulting statistical model is then used to estimate monthly runoff rates (December 1950 - December 2015) on a 0.5° x 0.5° grid. The performance of the newly derived runoff estimates is assessed in terms of cross validation. The paper closes with example applications, illustrating the potential of the new runoff estimates for climatological assessments and drought monitoring.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

River runoff is an essential climate variable as it is directly linked to the terrestrial water balance and controls a wide range of climatological and ecological processes. Despite its scientific and societal importance, there are to date no pan-European observation-based runoff estimates available. Here we employ a recently developed methodology to estimate monthly runoff rates on regular spatial grid in Europe. For this we first collect an unprecedented collection of river flow observations, combining information from three distinct data bases. Observed monthly runoff rates are first tested for homogeneity and then related to gridded atmospheric variables (E-OBS version 11) using machine learning. The resulting statistical model is then used to estimate monthly runoff rates (December 1950-December 2014) on a 0.5° × 0.5° grid. The performance of the newly derived runoff estimates is assessed in terms of cross validation. The paper closes with example applications, illustrating the potential of the new runoff estimates for climatological assessments and drought monitoring.