8 resultados para Cross correlation
em Publishing Network for Geoscientific
Resumo:
In the last decade, the aquatic eddy correlation (EC) technique has proven to be a powerful approach for non-invasive measurements of oxygen fluxes across the sediment water interface. Fundamental to the EC approach is the correlation of turbulent velocity and oxygen concentration fluctuations measured with high frequencies in the same sampling volume. Oxygen concentrations are commonly measured with fast responding electrochemical microsensors. However, due to their own oxygen consumption, electrochemical microsensors are sensitive to changes of the diffusive boundary layer surrounding the probe and thus to changes in the ambient flow velocity. The so-called stirring sensitivity of microsensors constitutes an inherent correlation of flow velocity and oxygen sensing and thus an artificial flux which can confound the benthic flux determination. To assess the artificial flux we measured the correlation between the turbulent flow velocity and the signal of oxygen microsensors in a sealed annular flume without any oxygen sinks and sources. Experiments revealed significant correlations, even for sensors designed to have low stirring sensitivities of ~0.7%. The artificial fluxes depended on ambient flow conditions and, counter intuitively, increased at higher velocities because of the nonlinear contribution of turbulent velocity fluctuations. The measured artificial fluxes ranged from 2 - 70 mmol m**-2 d**-1 for weak and very strong turbulent flow, respectively. Further, the stirring sensitivity depended on the sensor orientation towards the flow. Optical microsensors (optodes) that should not exhibit a stirring sensitivity were tested in parallel and did not show any significant correlation between O2 signals and turbulent flow. In conclusion, EC data obtained with electrochemical sensors can be affected by artificial flux and we recommend using optical microsensors in future EC-studies. Flume experiments were conducted in February 2013 at the Institute for Environmental Sciences, University of Koblenz-Landau Landau. Experiments were performed in a closed oval-shaped acrylic glass flume with cross-sectional width of 4 cm and height of 10 cm and total length of 54 cm. The fluid flow was induced by a propeller driven by a motor and mean flow velocities of up to 20 cm s-1 were generated by applying voltages between 0 V and 4 V DC. The flume was completely sealed with an acrylic glass cover. Oxygen sensors were inserted through rubber seal fittings and allowed positioning the sensors with inclinations to the main flow direction of ~60°, ~95° and ~135°. A Clark type electrochemical O2 microsensor with a low stirring sensitivity (0.7%) was tested and a fast-responding needle-type O2 optode (PyroScience GmbH, Germany) was used as reference as optodes should not be stirring sensitive. Instantaneous three-dimensional flow velocities were measured at 7.4 Hz using stereoscopic particle image velocimetry (PIV). The velocity at the sensor tip was extracted. The correlation of the fluctuating O2 sensor signals and the fluctuating velocities was quantified with a cross-correlation analysis. A significant cross-correlation is equivalent to a significant artificial flux. For a total of 18 experiments the flow velocity was adjusted between 1.7 and 19.2 cm s**-1, and 3 different orientations of the electrochemical sensor were tested with inclination angles of ~60°, ~95° and ~135° with respect to the main flow direction. In experiments 16-18, wavelike flow was induced, whereas in all other experiments the motor was driven by constant voltages. In 7 experiments, O2 was additionally measured by optodes. Although performed simultaneously with the electrochemical sensor, optode measurements are listed as separate experiments (denoted by the attached 'op' in the filename), because the velocity time series was extracted at the optode tip, located at a different position in the flume.
Resumo:
Topographic variation, the spatial variation in elevation and terrain features, underpins a myriad of patterns and processes in geography and ecology and is key to understanding the variation of life on the planet. The characterization of this variation is scale-dependent, i.e. it varies with the distance over which features are assessed and with the spatial grain (grid cell resolution) of analysis. A fully standardized and global multivariate product of different terrain features has the potential to support many large-scale basic research and analytical applications, however to date, such technique is unavailable. Here we used the digital elevation model products of global 250 m GMTED and near-global 90 m SRTM to derive a suite of topographic variables: elevation, slope, aspect, eastness, northness, roughness, terrain roughness index, topographic position index, vector ruggedness measure, profile and tangential curvature, and 10 geomorphological landform classes. We aggregated each variable to 1, 5, 10, 50 and 100 km spatial grains using several aggregation approaches (median, average, minimum, maximum, standard deviation, percent cover, count, majority, Shannon Index, entropy, uniformity). While a global cross-correlation underlines the high similarity of many variables, a more detailed view in four mountain regions reveals local differences, as well as scale variations in the aggregated variables at different spatial grains. All newly-developed variables are available for download at http://www.earthenv.org and can serve as a basis for standardized hydrological, environmental and biodiversity modeling at a global extent.
Resumo:
The European Project for Ice Coring in Antarctica (EPICA) includes a comprehensive pre-site survey on the inland ice plateau of Dronning Maud Land. This paper focuses on the investigation of the 18O content of shallow firn and ice cores. These cores were dated by profiles derived from dielectric-profiling and continuous flow analysis measurements. The individual records were stacked in order to obtain composite chronologies of 18O contents and accumulation rates with enhanced signal-to-noise variance ratios.These chronologies document variations in the last 200 and 1000 years.The 18O contents and accumulation rates decreased in the 19th century and increased during the 20th century.Using the empirical relationships between stable isotopes, accumulation rates and the 10m firn temperature, the variation of both parameters can be explained by the same temperature history.But other causes for these variations, such as the build-up of the snow cover, cannot be excluded. A marked feature of the 1000 year chronology occurs during the period AD 1180-1530 when the 18O contents remains below the long-term mean. Cross-correlation analyses between five cores from the Weddell Sea region and Dronning Maud Land show that 18O records can in some periods be positively correlated and in others negatively correlated, indicating a complex climatic history in time and space.
Resumo:
A thirty-six meter thick section of Miocene mica clay of Gross Pampau was studied for molluscs and bolboformas. The molluscs define the regional substages of late Reinbekian to late Langenfeldian. The bolboformas enable the cross-correlation with the nannoplankton subdivision and the geological time scales of BERGGREN et al. (1995). New species are Periploma ariei, Ringicula tiedemanni, Bolboforma robusta badenensis, and Bolboforma contorta.
Resumo:
Nutrient supply in the area off Northwest Africa is mainly regulated by two processes, coastal upwelling and deposition of Saharan dust. In the present study, both processes were analyzed and evaluated by different methods, including cross-correlation, multiple correlation, and event statistics, using remotely sensed proxies of the period from 2000 to 2008 to investigate their influence on the marine environment. The remotely sensed chlorophyll-a concentration was used as a proxy for the phytoplankton biomass stimulated by nutrient supply into the euphotic zone from deeper water layers and from the atmosphere. Satellite-derived alongshore wind stress and sea-surface temperature were applied as proxies for the strength and reflection of coastal upwelling processes. The westward wind and the dust component of the aerosol optical depth describe the transport direction of atmospheric dust and the atmospheric dust column load. Alongshore wind stress and induced upwelling processes were most significantly responsible for the surface chlorophyll-a variability, accounting for about 24% of the total variance, mainly in the winter and spring due to the strong north-easterly trade winds. The remotely sensed proxies allowed determination of time lags between biological response and its forcing processes. A delay of up to 16 days in the surface chlorophyll-a concentration due to the alongshore wind stress was determined in the northern winter and spring. Although input of atmospheric iron by dust storms can stimulate new phytoplankton production in the study area, only 5% of the surface chlorophyll-a variability could be ascribed to the dust component in the aerosol optical depth. All strong desert storms were identified by an event statistics in the time period from 2000 to 2008. The 57 strong storms were studied in relation to their biological response. Six events were clearly detected in which an increase of chlorophyll-a was caused by Saharan dust input and not by coastal upwelling processes. Time lags of <8 days, 8 days, and 16 days were determined. An increase in surface chlorophyll-a concentration of up to 2.4 mg m**3 after dust storms in which the dust component of the aerosol optical depth was up to 0.9 was observed.
Resumo:
We examine rock-magnetic, carbonate, and planktonic foraminiferal fluxes to identify climatically controlled changes of terrigenous and pelagic sedimentation at Ocean Drilling Program (ODP) Site 646 (the Labrador Sea). Terrigenous sediments are brought to the site principally by bottom currents. We use a rock-magnetic parameter sensitive to changes in magnetic mineral grain size, the ratio of anhysteretic susceptibility to low-field magnetic susceptibility (XARM/X), to monitor changes in bottom-current intensity over time, with large values of XARM/X (finer-grained magnetic minerals) indicating weaker bottom currents. A second rock-magnetic parameter, magnetic mineral accumulation rate (KaT) was used to indicate variations in terrigenous flux. Planktonic foraminiferal and carbonate accumulation rates (Pfar and CaC03ar) are used as indicators of pelagic flux. Absolute age assignments are based on correlation between the planktonic foraminiferal oxygen-isotope variations for Site 646 and the SPECMAP master oxygen-isotope curve. Cross-correlation analyses of the parameters that we studied with respect to the SPECMAP curve suggest that from oxygen-isotope stages 21 to 11, sedimentation rate, KaT, X, CaCO3ar, and Pfar were at their maximums, whereas XARM/X was at its minimum during peak interglacials (i.e., 0 k.y. lag time with respect to minimum ice volume). However, all parameters we examined lag behind minimum ice volume from stages 11 to 1, indicating a change in timing of both pelagic and terrigenous fluxes at approximately 400 k.y. BP. The negative correlation coefficient between XARM/X and the SPECMAP curve further suggest that finer-grained magnetic minerals are deposited during glacial periods, which probably reflects weaker bottom currents. The shift observed in the lag times of parameters examined with respect to the SPECMAP record is attributed to a change in significance of orbital parameters. Spectral results exhibit strong power in eccentricity (about 100 k.y.) throughout the record. Kap X, CaCO3flr, and Pfar show significant power in obliquity (about 41 k.y.), whereas XARM/X shows significant power at 73 k.y. from stages 21 to 11. The 73-k.y. period in XARM/X is near the difference tone of obliquity and eccentricity: 1/43-1/102 = 1/69. Kar and XARM/X show power only in eccentricity from stages 11 to 1. X and Pfar show significant power in precession (about 18 and 22 k.y.) whereas CaC03ar has power at 34 k.y, which could be a combination of precession and obliquity. The shift in power of orbital parameters may by attributed to the effect of the about 413-k.y. signal of eccentricity.
Resumo:
Up to 2.3 m long sediment sequences were recovered from the deepest part of Lake Hoare in Taylor Valley, southern Victoria Land, Antarctica. Sedimentological, biogeochemical, and mineralogical analyses revealed a high spatial variability of these parameters in Lake Hoare. Five distinct lithological units were recognized. Radiocarbon dating of bulk organic carbon samples from the sediment sequences yielded apparently too old ages and significant age reversals, which prevented the establishment of reliable age-depth models. However, cross correlation of the sedimentary characteristics with those of sediment records from neighbouring Lake Fryxell indicates that the lowermost two units of the Lake Hoare sediment sequences were probably deposited during the final phase of proglacial Lake Washburn, which occupied Taylor Valley during the late Pleistocene and early Holocene. High amounts of angular gravel and the absence of fine-grained material imply a complete desiccation with subaerial conditions in the Lake Hoare basin in the middle of the Holocene. The late Holocene (< c. 3300 calendar yr BP) is characterized by the establishment of environmental conditions similar to those existing today. A late Holocene desiccation event, such as proposed in former studies, is not indicated in the sediment sequences recovered.
Resumo:
Ultrasonic P wavc transmission seismograms recorded on sediment cores have been analyzed to study the acoustic and estimate the clastic properties of marine sediments from different provinces dominated by terrigenous, calcareous, amI diatomaceous sedimentation. Instantaneous frequencies computed from the transmission seismograms are displayed as gray-shaded images to give an acoustic overview of the lithology of each core. Ccntirneter-scale variations in the ultrasonic waveforms associated with lithological changes are illustrated by wiggle traces in detail. Cross-correlation, multiple-filter, and spectral ratio techniques are applied to derive P wave velocities and attenuation coefficients. S wave velocities and attenuation coefficients, elastic moduli, and permeabilities are calculated by an inversion scheme based on the Biot-Stoll viscoelastic model. Together wilh porosity measurements, P and S wave scatter diagrams are constructed to characterize different sediment types by their velocity- and attenuation-porosity relationships. They demonstrate that terrigenous, calcareous, and diatomaceous sediments cover different velocity- and attenuation-porosity ranges. In terrigcnous sediments, P wave vclocities and attenuation coefficients decrease rapidly with increasing porosity, whereas S wave velocities and shear moduli are very low. Calcareous sediments behave similarly at relatively higher porosities. Foraminifera skeletons in compositions of terrigenous mud and calcareous ooze cause a stiffening of the frame accompanied by higher shear moduli, P wave velocities, and attenuation coefficients. In diatomaceous ooze the contribution of the shear modulus becomes increasingly important and is controlled by the opal content, whereas attenuation is very low. This leads to the opportunity to predict the opal content from nondestructive P wave velocity measurements at centimeter-scale resolution.