81 resultados para Cresap, Mark W.
em Publishing Network for Geoscientific
Resumo:
The results of nine consolidation and permeability tests are presented for sediment samples from the Japan Trench and Nankai Trough sites of Leg 87. Coring and degassing disturbance results in an underconsolidated state for most Site 582 samples; however, the compressional effects of the subduction zone and high sediment accumulation rates may also play a role in causing underconsolidation. Samples collected at Site 583 exhibit similar evidence of disturbance but are slightly overconsolidated, confirming the possibility of sediment erosion at this site. The highly diatomaceous sediments at Site 584 are all overconsolidated, but the trend of overconsolidation decreases with depth. Disturbances of the diatom clay structure may increase the sediment compressibility and create this apparent overconsolidation
Resumo:
Whole-core magnetic susceptibility measurements define a detailed stratigraphy that enables correlation between the various Pleistocene, Pliocene, and upper Miocene sections cored on ODP Leg 110, near the Tiburon Rise. The magnetic susceptibility in these sections is primarily related to the content of volcanic ash, rich in titanomagnetite, and also inversely related to calcium carbonate content. The high resolution of the susceptibility record enables correlations with a resolution of about 0.3 m of sediment thickness, and the identification of minor faults not definable by biostratigraphic means. Reverse and normal faults identified in Hole 672A are probably a result of normal oceanic sediment dewatering and compaction processes. This work indicates some of the problems of using visible ash layers as time-stratigraphic markers.
Resumo:
The anisotropy of magnetic susceptibility documents the generation of tectonically produced fabrics in sediments that macroscopically show no evidence of this disruption. The fabric observed in initial accretion is largely produced by overprinting of the original sedimentary susceptibility anisotropy by an E-W horizontal tectonic shortening and vertical extension. The response of the sediments to stress during initial accretion is variable, particularly near the sediment surface, and appears to reflect the inhomogeneous distribution of strain rate in the overthrust sequence. The susceptibility anisotropy of sediments possessing scaly fabric is consistent with the strong orientation of Phyllosilicates seen in thin section, producing a Kmin normal to the scalyness. The slope sediments deposited on the accreted sequence are also affected by tectonic shortening. The accreted sequences at Sites 673 and 674 show a complex history of fabric modification, with previous tectonic fabrics overprinted by later fabric modifications, pointing to continued tectonic shortening during the accretion process. The form of the susceptibility anisotropy axes at Sites 673 and 674 is consistent with NESW shortening, probably reflected in the NW-SE surface expression of the out-of-sequence thrusts. The susceptibility anisotropy appears to document a downhole change in the trend of shortening from E to W at the surface to more NESW at depth, probably as a result of the obliquely trending basement ridge, the Tiburon Rise.
Resumo:
The increasing catalogue of high-quality ice-penetrating radar data provides a unique insight in the internal layering architecture of the Greenland ice sheet. The stratigraphy, an indicator of past deformation, highlights irregularities in ice flow and reveals large perturbations without obvious links to bedrock shape. In this work, to establish a new conceptual model for the formation process, we analysed the radar data at the onset of the Petermann Glacier, North Greenland, and created a three-dimensional model of several distinct stratigraphic layers. We demonstrate that the dominant structures are cylindrical folds sub-parallel to the ice flow. By numerical modelling, we show that these folds can be formed by lateral compression of mechanically anisotropic ice, while a general viscosity contrast between layers would not lead to folding for the same boundary conditions. We conclude that the folds primarily form by converging flow as the mechanically anisotropic ice is channelled towards the glacier.
Resumo:
On Leg 93, physical properties measurements were made of vertical and horizontal sonic velocity, acoustic impedance, vane shear strength, and penetrometer strength, using procedures discussed in Boyce (1973, 1976, 1984). Gravimetric procedures were used to determine wet-bulk density, grain density, porosity, and water content, using either the chunk method or the cylinder method. Calcium carbonate content of Leg 93 sediments was determined by the carbonate.