944 resultados para Coring

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this note is to present results of grain size analyses from 118 samples of the CRP-2/2A core using sieve and Sedigraph techniques. The samples were selected to represent the range of facies encountered, and tend to become more widely spaced with depth. Fifteen came from the upper 27 m of Quaternary and Pliocene sediments, 62 from the early Miocene-late Oligocene strata (27 to 307 mbsf), and 41 from the early Oligocene strata beneath (307 to 624 mbsf). The results are intended to provide reference data for lithological descriptions in the core logs (Cape Roberts Science Team, 1999), and to help with facies interpretation. The analytical technique used for determining size frequency of the sand fraction in our samples (sieving) is simple, physical and widely practised for over a century. Thus it provides a useful reference point for analyses produced by other faster and more sophisticated techniques, such as the Malvern laser particle size analysis system (Woolfe et al., 2000), and estimates derived from measurements taken with down-hole logging tools (Bücker, pers. com., 1999).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a gravity core from the eastern Mediterranean Sea, a chemically and mineralogically distinct, 5.5-cm-thick layer is present above sapropel S-1 and overlain by hemipelagic marls. Calcite is completely absent in this exotic layer, dolomite is present only in small amounts, and the Cr concentrations are significantly enhanced. The layer was deposited primarily under reducing conditions, but the distributions of redox-sensitive elements show that a large part of the exotic layer is now oxidised by a downward-progressing oxidation front. Sediments from within the nearby anoxic, hypersaline Urania Basin are similar to those from the exotic layer, in particular in S-, C-, and O-isotope distributions of pyrite and dolomite, as well as increased Cr concentrations. Mud expulsion due to expansion of gas-rich mud is proposed to explain the presence of the exotic layer outside the Urania Basin. The deposition of an anoxic layer above S-1 shielded the sapropel from oxidation which resulted in the rare occurrence of a complete preservation of S-1 and provides the first minimum age for the start of anoxic mud accumulation in the Urania Basin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physical and sedimentological investigations were carried out on a 14 m long gravity core and a 0.5 m long box core from 4440 m water depth off Queen Maud Land, East-Antarctica. Strongly bioturbated hemipelagic muds of predominantly terrigenous origin and a very small biogenic part build up the 'Normal-Facies'. Several sandy to silty layers are inserted in the 'Normal-Facies'. These layers are seperated by lithology, structure and the investigated parameters of this study and are interpreted as turbidites. The source area for the turbidity currents is supposed to be at the uppermost continental margin, close to the shelf break and there is evidenee for this gravity transport within the erosive Ritscher-Canyon, which extends close to the core position. The distribution of biogenic components indicates an age of 1.3 million years or more, with an average sedimentation rate of about 1 cm/1000 years. Early diagenetic proeesses caused water loss by compaction, errosion and dissolution of biogenic components and precipitation and recrystallization of manganese micronodules. Cyclic fluctuations of the sediment-parameters within the 'Normal-Facies' enable the distinction of a 'Glazial'- and an 'Interglazial'-Facies. The 'Glazial'-Facies reflects glacial sedimentary conditions and shows a dark olive gray colour, high susceptibility, low silt/clay-ratios, only a few biogenic components and the regular occurence of interrelated turbidite layers. In contrast, the 'Interglazial'-Facies is dominated by a light olive or olive-brown colour, low susceptibility, high silt/clay-ratios and an increased number of biogenic components. This facies corresponds to interglacial conditions. Three main processes are supposed to have been responsible for the observed facies changes: (1) the bottom water mass circulation, (2) the gravity transport by turbidity currents and (3) the biogenic surface production. These processes are related to the quaternary climatic changes. The extension of the ice shelves directed the gravity transport to the deep sea and the formation of Antarctic Bottom Water, which in turn influenced the silt/clay-ratios in the sediment record. Fluctuations in sea ice coverage controlled the biogenic surface production.

Relevância:

10.00% 10.00%

Publicador: