7 resultados para Corallinaceae
em Publishing Network for Geoscientific
Resumo:
Increased seawater pCO2, and in turn 'ocean acidification' (OA), is predicted to profoundly impact marine ecosystem diversity and function this century. Much research has already focussed on calcifying reef-forming corals (Class: Anthozoa) that appear particularly susceptible to OA via reduced net calcification. However, here we show that OA-like conditions can simultaneously enhance the ecological success of non-calcifying anthozoans, which not only play key ecological and biogeochemical roles in present day benthic ecosystems but also represent a model organism should calcifying anthozoans exist as less calcified (soft-bodied) forms in future oceans. Increased growth (abundance and size) of the sea anemone (Anemonia viridis) population was observed along a natural CO2 gradient at Vulcano, Italy. Both gross photosynthesis (PG) and respiration (R) increased with pCO2 indicating that the increased growth was, at least in part, fuelled by bottom up (CO2 stimulation) of metabolism. The increase of PG outweighed that of R and the genetic identity of the symbiotic microalgae (Symbiodinium spp.) remained unchanged (type A19) suggesting proximity to the vent site relieved CO2 limitation of the anemones' symbiotic microalgal population. Our observations of enhanced productivity with pCO2, which are consistent with previous reports for some calcifying corals, convey an increase in fitness that may enable non-calcifying anthozoans to thrive in future environments, i.e. higher seawater pCO2. Understanding how CO2-enhanced productivity of non- (and less-) calcifying anthozoans applies more widely to tropical ecosystems is a priority where such organisms can dominate benthic ecosystems, in particular following localized anthropogenic stress.
Resumo:
he downward transport of surface sediment deep into the sediment column by the Zoophycos-producing animal leads not only to large age differences between the Zoophycos structure and surrounding host sediment but also to large differences in age between different foraminifer species found inside the trace fossil. In the late Quaternary material from the southwestern Portuguese continental slope examined in this study, age differences of up to 2590 years were observed between the planktic foraminifer species Globigerinoides ruber and Globigerina bulloides. These differences are caused by the mixing of surface and host material with different abundances of the two species. If there are differences in the abundance of the two species at the surface and/or in the host sediment, plenty of relatively young foraminifers may be mixed with few relatively old ones, or vice versa. The age differences between species caused by the combination of deep-reaching bioturbation by the Zoophycos producer and abundance variations may be considerably larger than the age differences caused by the homogenizing bioturbation in the mixed layer.