3 resultados para Controversial works in defense of Roman Catholics.
em Publishing Network for Geoscientific
Resumo:
The efficiency of antioxidant defenses and relationship with body burden of metal and organic contaminants has not been previously investigated in arctic seabirds, neither in chicks nor in adults. The objective of this study was to compare such defenses in chicks from three species, Black-legged kittiwake (Rissa tridactyla), Northern fulmar (Fulmarus glacialis), and Herring gull (Larus argentatus), and the relationship with tissue concentrations of essential metals such as selenium and iron and halogenated organic compounds, represented by polychlorinated biphenyl (PCB). The results showed significant species-specific differences in the antioxidant responses which also corresponded with metal and PCB levels in different ways. The capability to neutralize hydroxyl radicals (TOSC-HO°) and the activities of catalase and Se-dependent glutathione peroxidases (GPX) clearly increased in species with the higher levels of metals and PCBs, while the opposite trend was observed for Se-independent GPX, TOSC against peroxyl radicals (ROO°) and peroxynitrite (ONOOH). Less clear relationships were obtained for glutathione levels, GSH/GSSG ratio, glutathione reductase and superoxide dismutase. The results showed differences in antioxidant efficiency between the species, and some of these defenses exhibited dose-response-like relationships with measured levels of selenium, iron and XPCBs. PCBs, selenium and iron levels were positively related to the responses of antioxidants with potential to reduce HO°/H2O2 (Se-dependent GPX, CAT and TOSC against HO°). However, direct causal relationships between antioxidant responses and contaminant concentrations could not be shown on individual level. Varying levels of metals and contaminants due to different diet and age were probably the main explanations for the species differences in antioxidant defense.
Resumo:
Hypercapnia and elevated temperatures resulting from climate change may have adverse consequences for many marine organisms. While diverse physiological and ecological effects have been identified, changes in those molecular mechanisms, which shape the physiological phenotype of a species and limit its capacity to compensate, remain poorly understood. Here, we use global gene expression profiling through RNA-Sequencing to study the transcriptional responses to ocean acidification and warming in gills of the boreal spider crab Hyas araneus exposed medium-term (10 weeks) to intermediate (1,120 µatm) and high (1,960 µatm) PCO2 at different temperatures (5°C and 10°C). The analyses reveal shifts in steady state gene expression from control to intermediate and from intermediate to high CO2 exposures. At 5°C acid-base, energy metabolism and stress response related genes were upregulated at intermediate PCO2, whereas high PCO2 induced a relative reduction in expression to levels closer to controls. A similar pattern was found at elevated temperature (10°C). There was a strong coordination between acid-base, metabolic and stress-related processes. Hemolymph parameters at intermediate PCO2 indicate enhanced capacity in acid-base compensation potentially supported by upregulation of a V-ATPase. The likely enhanced energy demand might be met by the upregulation of the electron transport system (ETS), but may lead to increased oxidative stress reflected in upregulated antioxidant defense transcripts. These mechanisms were attenuated by high PCO2, possibly as a result of limited acid-base compensation and metabolic down-regulation. Our findings indicate a PCO2 dependent threshold beyond which compensation by acclimation fails progressively. They also indicate a limited ability of this stenoecious crustacean to compensate for the effects of ocean acidification with and without concomitant warming.
Resumo:
The capacity of the East Asian seaweed Gracilaria vermiculophylla ("Ogonori") for production of prostaglandin E2 from arachidonic acid occasionally causes food poisoning after ingestion. During the last two decades the alga has been introduced to Europe and North America. Non-native populations have been shown to be generally less palatable to marine herbivores than native populations. We hypothesized that the difference in palatability among populations could be due to differences in the algal content of prostaglandins. We therefore compared the capacity for wound-activated production of prostaglandins and other eicosatetraenoid oxylipins among five native populations in East Asia and seven non-native populations in Europe and NW Mexico, using a targeted metabolomics approach. In two independent experiments non-native populations exhibited a significant tendency to produce more eicosatetraenoids than native populations after acclimation to identical conditions and subsequent artificial wounding. Fourteen out of 15 eicosatetraenoids that were detected in experiment I and all 19 eicosatetraenoids that were detected in experiment II reached higher mean concentrations in non-native than in native specimens. The datasets generated in both experiments are contained in http://doi.pangaea.de/10.1594/PANGAEA.855008. Wounding of non-native specimens resulted on average in 390 % more 15-keto-PGE2, in 90 % more PGE2, in 37 % more PGA2 and in 96 % more 7,8-di-hydroxy eicosatetraenoic acid than wounding of native specimens. The dataset underlying this statement is contained in http://doi.pangaea.de/10.1594/PANGAEA.854847. Not only PGE2, but also PGA2 and dihydroxylated eicosatetraenoic acid are known to deter various biological enemies of G. vermiculophylla that cause tissue or cell wounding, and in the present study the latter two compounds also repelled the mesograzer Littorina brevicula. The dataset underlying this statement is contained in http://doi.pangaea.de/10.1594/PANGAEA.854922. Non-native populations of G. vermiculophylla are thus more defended against herbivory than native populations. This increased capacity for activated chemical defense may have contributed to their invasion success and at the same time it poses an elevated risk for human food safety.