10 resultados para Controlled conditions

em Publishing Network for Geoscientific


Relevância:

60.00% 60.00%

Publicador:

Resumo:

During Deep Sea Drilling Project (DSDP) Leg 84 a core 1 m long and 6 cm in diameter of massive gas hydrate was unexpectedly recovered at Site 570 in upper slope sediment of the Middle America Trench offshore of Guatemala. This core contained only 5-7% sediment, the remainder being the solid hydrate composed of gas and water. Samples of the gas hydrate were decomposed under controlled conditions in a closed container maintained at 4°C. Gas pressure increased and asymptotically approached the equilibrium decomposition pressure for an ideal methane hydrate, CH4.5-3/4H2O, of 3930 kPa and approached to this pressure after each time gas was released, until the gas hydrate was completely decomposed. The gas evolved during hydrate decomposition was 99.4% methane, ~0.2% ethane, and ~0.4% CO2. Hydrocarbons from propane to heptane were also present, but in concentrations of less than 100 p.p.m. The carbon-isotopic composition of methane was -41 to -44 per mil, relative to PDB standard. The observed volumetric methane/water ratio was 64 or 67, which indicates that before it was stored and analyzed, the gas hydrate probably had lost methane. The sample material used in the experiments was likely a mixture of methane hydrate and water ice. Formation of this massive gas hydrate probably involved the following processes: (i) upward migration of gas and its accumulation in a zone where conditions favored the growth of gas hydrates, (ii) continued, unusually rapid biological generation of methane, and (iii) release of gas from water solution as pressure decreased due to sea level lowering and tectonic uplift.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biological activity introduces variability in element incorporation during calcification and thereby decreases the precision and accuracy when using foraminifera as geochemical proxies in paleoceanography. This so-called 'vital effect' consists of organismal and environmental components. Whereas organismal effects include uptake of ions from seawater and subsequent processing upon calcification, environmental effects include migration- and seasonality-induced differences. Triggering asexual reproduction and culturing juveniles of the benthic foraminifer Ammonia tepida under constant, controlled conditions allow environmental and genetic variability to be removed and the effect of cell-physiological controls on element incorporation to be quantified. Three groups of clones were cultured under constant conditions while determining their growth rates, size-normalized weights and single-chamber Mg/Ca and Sr/Ca using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Results show no detectable ontogenetic control on the incorporation of these elements in the species studied here. Despite constant culturing conditions, Mg/Ca varies by a factor of similar to 4 within an individual foraminifer while intra-individual Sr/Ca varies by only a factor of 1.6. Differences between clone groups were similar to the intra-clone group variability in element composition, suggesting that any genetic differences between the clone-groups studied here do not affect trace element partitioning. Instead, variability in Mg/Ca appears to be inherent to the process of bio-calcification itself. The variability in Mg/Ca between chambers shows that measurements of at least 6 different chambers are required to determine the mean Mg/Ca value for a cultured foraminiferal test with a precision of <= 10%

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. Biological interactions can alter predictions that are based on single-species physiological response. It is known that leaf segments of the seagrass Posidonia oceanica will increase photosynthesis with lowered pH, but it is not clear whether the outcome will be altered when the whole plant and its epiphyte community, with different respiratory and photosynthetic demands, are included. In addition, the effects on the Posidonia epiphyte community have rarely been tested under controlled conditions, at near-future pH levels. 2. In order to better evaluate the effects of pH levels as projected for the upcoming decades on seagrass meadows, shoots of P. oceanica with their associated epiphytes were exposed in the laboratory to three pH levels (ambient: 8.1, 7.7 and 7.3, on the total scale) for 4 weeks. Net productivity, respiration, net calcification and leaf fluorescence were measured on several occasions. At the end of the study, epiphyte community abundance and composition, calcareous mass and crustose coralline algae growth were determined. Finally, photosynthesis vs. irradiance curves (PE) was produced from segments of secondary leaves cleaned of epiphytes and pigments extracted. 3. Posidonia leaf fluorescence and chlorophyll concentrations did not differ between pH treatments. Net productivity of entire shoots and epiphyte-free secondary leaves increased significantly at the lowest pH level yet limited or no stimulation in productivity was observed at the intermediate pH treatment. Under both pH treatments, significant decreases in epiphytic cover were observed, mostly due to the reduction of crustose coralline algae. The loss of the dominant epiphyte producer yet similar photosynthetic response for epiphyte-free secondary leaves and shoots suggests a minimal contribution of epiphytes to shoot productivity under experimental conditions. 4. Synthesis. Observed responses indicate that under future ocean acidification conditions foreseen in the next century an increase in Posidonia productivity is not likely despite the partial loss of epiphytic coralline algae which are competitors for light. A decline in epiphytic cover could, however, reduce the feeding capacity of the meadow for invertebrates. In situ long-term experiments that consider both acidification and warming scenarios are needed to improve ecosystem-level predictions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To study the effects of temperature, salinity, and life processes (growth rates, size, metabolic effects, and physiological/genetic effects) on newly precipitated bivalve carbonate, we quantified shell isotopic chemistry of adult and juvenile animals of the intertidal bivalve Mytilus edulis (Blue mussel) collected alive from western Greenland and the central Gulf of Maine and cultured them under controlled conditions. Data for juvenile and adult M. edulis bivalves cultured in this study, and previously by Wanamaker et al. (2006, doi:10.1029/2005GC001189), yielded statistically identical paleotemperature relationships. On the basis of these experiments we have developed a species-specific paleotemperature equation for the bivalve M. edulis [T °C = 16.28 (±0.10) - 4.57 (±0.15) {d18Oc VPBD - d18Ow VSMOW} + 0.06 (±0.06) {d18Oc VPBD - d18Ow VSMOW}**2; r**2 = 0.99; N = 323; p < 0.0001]. Compared to the Kim and O'Neil (1997) inorganic calcite equation, M. edulis deposits its shell in isotope equilibrium (d18Ocalcite) with ambient water. Carbon isotopes (d13Ccalcite) from sampled shells were substantially more negative than predicted values, indicating an uptake of metabolic carbon into shell carbonate, and d13Ccalcite disequilibrium increased with increasing salinity. Sampled shells of M. edulis showed no significant trends in d18Ocalcite based on size, cultured growth rates, or geographic collection location, suggesting that vital effects do not affect d18Ocalcite in M. edulis. The broad modern and paleogeographic distribution of this bivalve, its abundance during the Holocene, and the lack of an intraspecies physiologic isotope effect demonstrated here make it an ideal nearshore paleoceanographic proxy throughout much of the North Atlantic Ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Equilibrium melting and controlled cooling experiments were undertaken to constrain the crystallization and cooling histories of tholeiitic basalts recovered by the Ocean Drilling Program drilling of Site 989 on the Southeast Greenland continental margin. Isothermal experiments conducted at 1 atm. and at the fayalite-magnetite-quartz buffer using lava sample Section 163-989B-10R-7 yielded the equilibrium appearance sequence with decreasing temperature: olivine at 1184 ± 2ºC; plagioclase at 1177ºC ± 5ºC; augite at 1167 ± 5ºC; and pigeonite at 1113 ± 12ºC. In controlled cooling experiments using the same starting composition and cooling rates between 10ºC/hr and 2000ºC/hr, we find a significant temperature delay in the crystallization of olivine, plagioclase, and augite (relative to the equilibrium appearance temperature); pigeonite does not form under any dynamic crystallization conditions. Olivine exhibits the largest suppression in appearance temperature (e.g., 30º for 10ºC/hr and >190º at 100ºC/hr), while plagioclase shows the smallest (~10ºC at 10ºC/hr; 30ºC at 100ºC/hr, and ~80ºC at 1000ºC/hr). These results are in marked contrast to those obtained on lunar basalts, which generally show a large suppression of plagioclase crystallization and modest suppression of olivine crystallization with an increased cooling rate. The results we report agree well with the petrography of lavas recovered from Site 989. Furthermore, the textural analysis of run products, representing a large range of cooling rates and quench temperatures (1150ºC to 1000ºC), provide a framework for evaluating cooling conditions necessary for glass formation, rates of plagioclase growth, and kinetic factors governing plagioclase growth morphology. Specifically, we use these insights to interpret the textural and mineralogical features of the unusual compound flow recovered at Site 989. We concluded from the analysis that this flow most likely records multiple breakouts from a distal tube at an abrupt break in slope, possibly a fault scarp, resulting in the formation of a lava fan delta. This interpretation implies that normal faulting of the oldest lava sequences (lower and, possibly, middle series) preceded eruption of Site 989 lavas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Palynological analyses were performed on 53 surface sediment samples from the North Pacific Ocean, including the Bering and Okhotsk Seas (37-64°N, 144°E-148°W), in order to document the relationships between the dinocyst distribution and sea-surface conditions (temperatures, salinities, primary productivity and sea-ice cover). Samples are characterized by concentrations ranging from 18 to 143816 cysts/cm**3 and the occurrence of 32 species. A canonical correspondence analysis (CCA) was carried out to determine the relationship between environmental variables and the distribution of dinocyst taxa. The first and second axes represent, respectively, 47% and 17.8% of the canonical variance. Axis 1 is positively correlated with all parameters except to the sea-ice and primary productivity in August, which are on the negative side. Results indicate that the composition of dinocyst assemblages is mostly controlled by temperature and that all environmental variables are correlated together. The CCA distinguishes 3 groups of dinocysts: the heterotrophic taxa, the genera Impagidinium and Spiniferites as well as the cyst of Pentapharsodinium dalei and Operculodinium centrocarpum. Five assemblage zones can be distinguished: 1) the Okhotsk Sea zone, which is associated to temperate and eutrophic conditions, seasonal upwellings and Amur River discharges. It is characterized by the dominance of O. centrocarpum, Brigantedinium spp. and Islandinium minutum; 2) the Western Subarctic Gyre zone with subpolar and mesotrophic conditions due to the Kamchatka Current and Alaska Stream inflows. Assemblages are dominated by Nematosphaeropsis labyrinthus, Pyxidinopsis reticulata and Brigantedinium spp.; 3) the Bering Sea zone, depicting a subpolar environment, influenced by seasonal upwellings and inputs from the Anadyr and Yukon Rivers. It is characterized by the dominance of I. minutum and Brigantedinium spp.; 4) the Alaska Gyre zone with temperate conditions and nutrient-enriched surface waters, which is dominated by N. labyrinthus and Brigantedinium spp. and 5) the Kuroshio Extension-North Pacific-Subarctic Current zone characterized by a subtropical and oligotrophic environment, which is dominated by O. centrocarpum, N. labyrinthus and warm taxa of the genus Impagidinium. Transfer functions were tested using the modern analog technique (MAT) on the North Pacific Ocean (= 359 sites) and the entire Northern Hemisphere databases ( = 1419 sites). Results confirm that the updated Northern Hemisphere database is suitable for further paleoenvironmental reconstructions, and the best results are obtained for temperatures with an accuracy of +/-1.7 °C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Emiliania huxleyi (strain B 92/11) was exposed to different nutrient supply, CO2 and temperature conditions in phosphorus controlled chemostats to investigate effects on organic carbon exudation and partitioning between the pools of particulate organic carbon (POC) and dissolved organic carbon (DOC). 14C incubation measurements for primary production (PP) and extracellular release (ER) were performed. Chemical analysis included the amount and composition of high molecular weight (>1 kDa) dissolved combined carbohydrates (HMW-dCCHO), particulate combined carbohydrates (pCCHO) and the carbon content of transparent exopolymer particles (TEP-C). Applied CO2 and temperature conditions were 300, 550 and 900 µatm pCO2 at 14 °C, and additionally 900 µatm pCO2 at 18 °C simulating a greenhouse ocean scenario. Enhanced nutrient stress by reducing the dilution rate (D) from D = 0.3 /d to D = 0.1 /d (D = µ) induced the strongest response in E. huxleyi. At µ = 0.3 /d, PP was significantly higher at elevated CO2 and temperature and DO14C production correlated to PO14C production in all treatments, resulting in similar percentages of extracellular release (PER; (DO14C production/PP) × 100) averaging 3.74 ± 0.94%. At µ = 0.1 /d, PO14C production decreased significantly, while exudation of DO14C increased. Thus, indicating a stronger partitioning from the particulate to the dissolved pool. Maximum PER of 16.3 ± 2.3% were observed at µ = 0.1 /d at elevated CO2 and temperature. While cell densities remained constant within each treatment and throughout the experiment, concentrations of HMW-dCCHO, pCCHO and TEP were generally higher under enhanced nutrient stress. At µ= 0.3 /d, pCCHO concentration increased significantly with elevated CO2 and temperature. At µ = 0.1 /d, the contribution (mol % C) of HMW-dCCHO to DOC was lower at elevated CO2 and temperature while pCCHO and TEP concentrations were higher. This was most pronounced under greenhouse conditions. Our findings suggest a stronger transformation of primary produced DOC into POC by coagulation of exudates under nutrient limitation. Our results further imply that elevated CO2 and temperature will increase exudation by E. huxleyi and may affect organic carbon partitioning in the ocean due to an enhanced transfer of HMW-dCCHO to TEP by aggregation processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A pressurized core with CH4 hydrate or dissolved CH4 should evolve gas volumes in a predictable manner as pressure is released over time at isothermal conditions. Incremental gas volumes were collected as pressure was released over time from 29 pressure core sampler (PCS) cores from Sites 994, 995, 996, and 997 on the Blake Ridge. Most of these cores were kept at or near 0ºC with an ice bath, and many of these cores yielded substantial quantities of CH4. Volume-pressure plots were constructed for 20 of these cores. Only five plots conform to expected volume and pressure changes for sediment cores with CH4 hydrate under initial pressure and temperature conditions. However, other evidence suggests that sediment in these five and at least five other PCS cores contained CH4 hydrate before core recovery and gas release. Detection of CH4 hydrate in a pressurized sediment core through volume-pressure relationships is complicated by two factors. First, significant quantities of CH4-poor borehole water fill the PCS and come into contact with the core. This leads to dilution of CH4 concentration in interstitial water and, in many cases, decomposition of CH4 hydrate before a degassing experiment begins. Second, degassing experiments were conducted after the PCS had equilibrated in an ice-water bath (0ºC). This temperature is significantly lower than in situ values in the sediment formation before core recovery. Our results and interpretations for PCS cores collected on Leg 164 imply that pressurized containers formerly used by the Deep Sea Drilling Project (DSDP) and currently used by ODP are not appropriately designed for direct detection of gas hydrate in sediment at in situ conditions through volume-pressure relationships.