14 resultados para Construction sites.

em Publishing Network for Geoscientific


Relevância:

40.00% 40.00%

Publicador:

Resumo:

ix Ocean Drilling Program (ODP) sites, in the Northwest Atlantic have been used to investigate kinematic and chemical changes in the "Western Boundary Undercurrent" (WBUC) during the development of full glacial conditions across the Marine Isotope Stage 5a/4 boundary (~70,000 years ago). Sortable silt mean grain size(sort s) measurements are employed to examine changes in near bottom flow speeds, together with carbon isotopes measured in benthic foraminifera and % planktic foraminiferal fragmentation as proxies for changes in water-mass chemistry. A depth transect of cores, spanning 1.8-4.6 km depth, allows changes in both the strength and depth of the WBUC to be constrained across millennial scale events. Sort s measurements reveal that the flow speed structure of the WBUC during warm intervals ("interstadials") was comparable to modern (Holocene) conditions. However, significant differences are observed during cold intervals, with higher relative flow speeds inferred for the shallow component of the WBUC (~2 km depth) during all cold "stadial" intervals (including Heinrich Stadial 6), and a substantial weakening of the deep component (~3-4 km) during full glacial conditions. Our results therefore reveal that the onset of full glacial conditions was associated with a regime shift to a shallower mode of circulation (involving Glacial North Atlantic Intermediate Water) that was quantitatively distinct from preceding cold stadial events. Furthermore, our chemical proxy data show that the physical response of the WBUC during the last glacial inception was probably coupled to basin-wide changes in the water-mass composition of the deep Northwest Atlantic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The number of well-dated pollen diagrams in Europe has increased considerably over the last 30 years and many of them have been submitted to the European Pollen Database (EPD). This allows for the construction of increasingly precise maps of Holocene vegetation change across the continent. Chronological information in the EPD has been expressed in uncalibrated radiocarbon years, and most chronologies to date are based on this time scale. Here we present new chronologies for most of the datasets stored in the EPD based on calibrated radiocarbon years. Age information associated with pollen diagrams is often derived from the pollen stratigraphy itself or from other sedimentological information. We reviewed these chronological tie points and assigned uncertainties to them. The steps taken to generate the new chronologies are described and the rationale for a new classification system for age uncertainties is introduced. The resulting chronologies are fit for most continental-scale questions. They may not provide the best age model for particular sites, but may be viewed as general purpose chronologies. Taxonomic particularities of the data stored in the EPD are explained. An example is given of how the database can be queried to select samples with appropriate age control as well as the suitable taxonomic level to answer a specific research question.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The distinctly cyclic sediments recovered during ODP Leg 154 played an important role in constructing the astronomical time scale and associated astro(bio)chronology for the Miocene, and in deciphering ocean-climate history. The accuracy of the timescale critically depends on the reliability of the shipboard splice used for the tuning and on the tuning itself. New high-resolution colour- and magnetic susceptibility core scanning data supplemented with limited XRF-data allow improvement of the stratigraphy. The revised composite record results in an improved astronomical age model for ODP Site 926 between 5 and 14.4 Ma. The new age model is confirmed by results of complex amplitude demodulation of the precession and obliquity related cycle patterns. Different values for tidal dissipation are applied to improve the fit between the sedimentary cycle patterns and the astronomical solution. Due to the improved stratigraphy and tuning, supported by the results of amplitude demodulation, the revised time scale yields more reliable age estimates for planktic foraminiferal and calcareous nannofossil events. The results of this study highlight the importance of stratigraphy for timescale construction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A generally rich radiolarian fauna ranging in age from Quaternary to early Eocene (Zone RP7) was found at five of the eight sites drilled during Ocean Drilling Program (ODP) Leg 199. Of particular interest are the stratigraphically complete assemblages that range in age from middle Miocene (Zone RN5) to early Eocene (Zone RP7), composites of Sites 1218, 1219, and 1220. At the same sites, multisensor track (MST) data show consistent cycles in gamma ray attenuation density, color, and carbonate content that can be correlated on a submeter scale from the early Miocene to early Eocene. In addition, the magnetic reversal records from these three sites allow construction of an absolute timescale. A series of 305 radiolarian morphologic first and last occurrences and evolutionary transitions for radiolarians were determined and correlated directly with the accompanying MST and paleomagnetic data, resulting in a detailed and accurate dating of events. Since many of the bioevents are found at more than one site, it was also possible to test their reliability within the study area. Twelve new species are described: Calocycletta (Calocycletta) anekathen, Dorcadospyris anastasis, Dorcadospyris copelata, Dorcadospyris cyclacantha, Dorcadospyris ombros, Dorcadospyris scambos, Eucyrtidium mitodes, Theocyrtis careotuberosa, Theocyrtis perpumila, Theocyrtis perysinos, Theocyrtis setanios, and Thyrsocyrtis (Pentalacorys) orthotenes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A seawall was constructed in 1897 along the steep coast of Streckelsberg, Usedom Island to stop the cliff retreat. It was destroyed several times by storm induced sea floods, reconstructed and gradually extended to a length of 450 m. After the severe storm event of 1/2.3.1949, no more repair work was implemented. The ruins were no longer capable of preventing further erosion of the Streckelsberg cliff. A new protective structure became a necessity against ongoing erosion, and to check the lowering of the abrasion platform. The construction of three breakwaters began in 1995. A severe storm occurred on 3/4.11.1995 before their completion. Coastal bottom sediment mapping using a sidescan-sonar carried out two days later showed that a channel system down to a depth of 1.5 m was cut into the sand layer covering the sea floor on both sides of the Koserow Bank. The bottom of these channels was paved with gravel and boulders. This layer was encountered in the whole surveyed area below a mobile sand layer. Discharged bodies of fine sand half a meter high and erosional cavities several m2 in diameter around boulders led to the conclusion that an intensive sediment movement down to a depth of 11 m had taken place during the storm. A storm related direction of sediment discharge could not be identified. The existing section of the breakwaters withstood the severe storm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A composite section, which reconstructs a continuous stratigraphic record from cores of multiple nearby holes, and its associated composite depth scale are important tools for analyzing sediment recovered from a drilling site. However, the standard technique for creating composite depth scales on drilling cruises does not correct for depth distortion within each core. Additionally, the splicing technique used to create composite sections often results in a 10-15% offset between composite depths and measured drill depths. We present a new automated compositing technique that better aligns stratigraphy across holes, corrects depth offsets, and could be performed aboard ship. By analyzing 618 cores from seven Ocean Drilling Program (ODP) sites, we estimate that ?80% of the depth offset in traditional composite depth scales results from core extension during drilling and extraction. Average rates of extension are 12.4 ± 1.5% for calcareous and siliceous cores from ODP Leg 138 and 8.1 ± 1.1% for calcareous and clay-rich cores from ODP Leg 154. Also, average extension decreases as a function of depth in the sediment column, suggesting that elastic rebound is not the dominant extension mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have performed U-Th isotope analyses on pure aragonite samples from the upper sections of Leg 166 cores to assign each aragonite-rich sediment package to the correct sea-level highstand. The uppermost sediment package from each of the four sites investigated (Sites 1003, 1005, 1006, and 1007) yielded a Holocene U-Th age. Sediment packages from deeper in the cores have suffered diagenesis. This diagenesis consists of significant U loss (up to 40%) in the site nearest the platform (Site 1005), slight U gain in sites further from the platform, and continuous loss of pure 234U caused by alpha recoil at all sites. The difference in diagenesis between the sites can be explained by the different fluid-flow histories they have experienced. Site 1005 is sufficiently close to the platform to have probably experienced a change in flow direction whenever the banks have flooded or become exposed. Other sites have probably experienced continuous flow into the sediment. Although diagenesis prevents assignment of accurate ages, it is sufficiently systematic that it can be corrected for and each aragonite-rich package assigned to a unique highstand interval. Site 1005 has sediment packages from highstands associated with marine isotope Stages 1, 5, 7, 9, and 11. Site 1006 is similar, except that the Stage 7 highstand is missing, at least in Hole 1006A. Site 1003 has sediment only from Stage 1 and 11 highstands within the U-Th age range. And Site 1007 has sediment only from the stage 1 highstand. This information will allow the construction of better age models for these sites. No high-aragonite sediments are seen for Stage 3 or Substages 5a and 5c. Unless rather unusual erosion has occurred, this indicates that the banks did not flood during these periods. If true, this would require the sea level for Substages 5a and 5c to have remained at least ~10 m lower than today.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiple copies of Cretaceous black shales extending from the early Cenomanian to the end of the Santonian were recovered at five sites on Demerara Rise during Leg 207 of the Ocean Drilling Program. These sediments are primarily composed of laminated organic-rich claystones interbedded with coarser, lightly laminated foraminferal-bearing packstones and wackestones. The black shales represent the local expression of widespread organic-rich sedimentation in the Atlantic during the mid-Cretaceous. However, incomplete recovery prevented construction of continuous composite sections, resulting in uncertainties concerning the correct stratigraphic placement of individual cores. By combining high-resolution measurements of bulk density collected shipboard on the multisensor track with continuous downhole measurements of formation resistivity using the Formation MicroScanner, an equivalent logging depth scale was constructed for black shales recovered from Sites 1258, 1260, and 1261. The integrated depths approach centimeter-scale resolution and are supported by comparisons of coarser resolution natural gamma ray emissions collected on cores and through downhole logging operations. The new depths highlight the extent of both intra- and intercore gaps and provide an opportunity to further constrain temporal and spatial paleoceanographic changes captured in proxy records from these sediments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A major objective of Leg 189 was to date the opening of the Australia-Antarctic Gateway to shallow-water circulation and subsequently to deepwater circulation in the Paleogene. Calcareous nannofossils are the most consistently present, although not necessarily the most abundant fossil group in Paleogene sections, and the shipboard study (Exon, Kennett, Malone, et al., 2001, doi:10.2973/odp.proc.ir.189.2001) showed that they generally provided the most useful age information. This report presents documentation of the stratigraphic distribution of nannofossils in the Paleogene and summarizes useful nannofossil datums, which should facilitate construction of age-depth curves and contribute to an integrated chronology for Leg 189 sediments. Previous Paleogene nannofossil study in this area is that of Edwards and Perch-Nielsen (1975, doi:10.2973/dsdp.proc.29.113.1975).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

More than 50 discrete volcanic ash layers were recovered at the five drill sites of the Blake Nose depth transect (Leg 171B, western central Atlantic). The majority of these ash layers are intercalated with Eocene hemipelagic sediments with a pronounced frequency maximum in the upper Eocene. Several ash layers appear to be deposited from volcanic fallout with little or no indication of secondary remobilization. They provide excellent stratigraphic markers for a correlation of the Leg 171B drill sites. Other ash layers were probably redeposited from volcaniclastic-rich turbidity currents, but they still represent geologically instantaneous events that can be used in stratigraphic correlation between adjacent drill holes. Additional nonvolcanic marker beds, like the suspect late Eocene impact event layer, were included in our hole-to-hole correlations. Stratigraphic and downcore positions of marker beds were compiled and plotted against existing composite depth records that were constructed to guide high-resolution sampling. Comparison of our correlation with the spliced composite sections of each drill site reveals several minor and some major discrepancies. These may result from drilling distortion or missing sections, from the lack of unambiguous criteria for the synchronism of ash layers, or from the systematic exclusion of marker-bed data in the construction of the spliced record. Integration of both correlation approaches will help eliminate most of the observed discrepancies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Taupo Volcanic Zone (TVZ), in the North Island, New Zealand, is arguably the most active Quaternary rhyolitic system in the world. Numerous and widespread rhyolitic tephra layers, sourced from the TVZ, form valuable chronostratigraphic markers in onshore and offshore sedimentary sequences. In deep-sea cores from Ocean Drilling Program (ODP) Leg 181 Sites 1125, 1124, 1123 and 1122, located east of New Zealand, ca 100 tephra beds are recognised post-dating the Plio-Pleistocene boundary at 1.81 Ma. These tephras have been dated by a combination of magnetostratigraphy, orbitally tuned stable-isotope data and isothermal plateau fission track ages. The widespread occurrence of ash offshore to the east of New Zealand is favoured by the small size of New Zealand, the explosivity of the mainly plinian and ignimbritic eruptions and the prevailing westerly wind field. Although some tephras can be directly attributed to known TVZ eruptions, there are many more tephras represented within ODP-cores that have yet to be recognised in near-source on-land sequences. This is due to proximal source area erosion and/or deep burial as well as the adverse effect of vapour phase alteration and devitrification within near-source welded ignimbrites. Despite these difficulties, a number of key deep-sea tephras can be reliably correlated to equivalent-aged tephra exposed in uplifted marine back-arc successions of Wanganui Basin where an excellent chronology has been developed based on magnetostratigraphy, orbitally calibrated sedimentary cycles and isothermal plateau fission track ages on tephra. Significant Pleistocene tephra markers include: the Kawakawa, Omataroa, Rangitawa/Onepuhi, Kaukatea, Kidnappers-B, Potaka, Unit D/Ahuroa, Ongatiti, Rewa, Sub-Rewa, Pakihikura, Ototoka and Table Flat Tephras. Six other tephra layers are correlated between ODP-core sites but have yet to be recognised within onshore records. The identification of Pleistocene TVZ-sourced tephras within the ODP record, and their correlation to Wanganui Basin and other onshore sites is a significant advance as it provides: (1) an even more detailed history of the TVZ than can be currently achieved from the near-source record, (2) a high-resolution tephrochronologic framework for future onshore-offshore paleoenvironmental reconstructions, and (3) well-dated tephra beds correlated from the offshore ODP sites with astronomically tuned timescales provide an opportunity to critically evaluate the chronostratigraphic framework for onshore Plio-Pleistocene sedimentary sequences (e.g. Wanganui Basin, cf. Naish et al. (1998, doi:10.1016/S0277-3791(97)00075-9).