94 resultados para Constant-amplitude loadings
em Publishing Network for Geoscientific
Resumo:
Oxygen isotopic compositions of the tests of planktonic foraminifera from several Deep Sea Drilling Project sites provide a general picture of low-latitude marine temperatures from Maastrichtian time to the present. Bottom temperatures determined from the isotopic compositions of benthonic foraminifera are interpreted as being indicative of high-latitude surface temperatures. Prior to the beginning of middle Miocene time, high- and low-latitude temperatures changed in parallel fashion. Following an apparently small and short-lived drop in temperature near the Tertiary-Cretaceous boundary, temperatures remained warm and relatively constant through Paleocene and early and middle Eocene time; bottom temperatures then were on the order of 12°C. A sharp temperature drop in late Eocene time was followed by a more gradual lowering of temperature, culminating in a late Oligocene high-latitude temperature minimum of about 4°C. A temperature rise through early Miocene time was followed in middle Miocene time by a sudden divergence of high- and low-latitude temperatures: high-latitude temperatures dropped dramatically, perhaps corresponding to the onset of major glaciation in Antarctica, but low-latitude temperatures remained constant or perhaps increased. This uncoupling of high-and low-latitude temperatures is postulated to be related to the establishment of a circum-Antarctic circulation similar to that of today. A further drop in high-latitude temperatures in late Pliocene time probably signaled the onset of a major increase in polar glaciation, including extensive sea-ice formation. Early Miocene, small-amplitude (1 per mil) sympathetic fluctuations in isotopic compositions of planktonic and benthonic foraminifera have been identified. These have a period of several hundred thousand years. Superimposed upon these are much more rapid and smaller fluctuations (0.2 to 0.5 per mil) with a period of about 80000 to 90000 yr. This is similar to the period observed for Pleistocene isotopic temperature fluctuations. In low latitudes, much smaller vertical temperature gradients seem to have existed during Maastrichtian and Paleogene time than exist at present. The absence of a sharply defined thermocline during early Tertiary time is also suggested.
Resumo:
This dataset present result from the DFG- funded Arctic-Turbulence-Experiment (ARCTEX-2006) performed by the University of Bayreuth on the island of Svalbard, Norway, during the winter/spring transition 2006. From May 5 to May 19, 2006 turbulent flux and meteorological measurements were performed on the monitoring field near Ny-Ålesund, at 78°55'24'' N, 11°55'15'' E Kongsfjord, Svalbard (Spitsbergen), Norway. The ARCTEX-2006 campaign site was located about 200 m southeast of the settlement on flat snow covered tundra, 11 m to 14 m above sea level. The permanent sites used for this study consisted of the 10 m meteorological tower of the Alfred Wegener Institute for Polar- and Marine Research (AWI), the international standardized radiation measurement site of the Baseline Surface Radiation Network (BSRN), the radiosonde launch site and the AWI tethered balloon launch sites. The temporary sites - set up by the University of Bayreuth - were a 6 m meteorological gradient tower, an eddy-flux measurement complex (EF), and a laser-scintillometer section (SLS). A quality assessment and data correction was applied to detect and eliminate specific measurement errors common at a high arctic landscape. In addition, the quality checked sensible heat flux measurements are compared with bulk aerodynamic formulas that are widely used in atmosphere-ocean/land-ice models for polar regions as described in Ebert and Curry (1993, doi:10.1029/93JC00656) and Launiainen and Cheng (1995). These parameterization approaches easily allow estimation of the turbulent surface fluxes from routine meteorological measurements. The data show: - the role of the intermittency of the turbulent atmospheric fluctuation of momentum and scalars, - the existence of a disturbed vertical temperature profile (sharp inversion layer) close to the surface, - the relevance of possible free convection events for the snow or ice melt in the Arctic spring at Svalbard, and - the relevance of meso-scale atmospheric circulation pattern and air-mass advection for the near-surface turbulent heat exchange in the Arctic spring at Svalbard. Recommendations and improvements regarding the interpretation of eddy-flux and laser-scintillometer data as well as the arrangement of the instrumentation under polar distinct exchange conditions and (extreme) weather situations could be derived.
Resumo:
The Late Paleocene and Early Eocene were characterised by warm greenhouse climates, punctuated by a series of rapid warming and ocean acidification events known as "hyperthermals", thought to have been paced or triggered by orbital cycles. While these hyperthermals, such as the Paleocene Eocene Thermal Maximum (PETM), have been studied in great detail, the background low-amplitude cycles seen in carbon and oxygen-isotope records throughout the Paleocene-Eocene have hitherto not been resolved. Here we present a 7.7 million year (myr) long, high-resolution, orbitally-tuned, benthic foraminiferal stable-isotope record spanning the late Paleocene and early Eocene interval (~52.5 - 60.5 Ma) from Ocean Drilling Program (ODP) Site 1262, South Atlantic. This high resolution (~2-4 kyr) record allows the changing character and phasing of orbitally-modulated cycles to be studied in unprecedented detail as it reflects the long-term trend in carbon cycle and climate over this interval. The main pacemaker in the benthic oxygen-isotope (d18O) and carbon-isotope (d13C) records from ODP Site 1262, are the long (405 kyr) and short (100 kyr) eccentricity cycles, and precession (21 kyr). Obliquity (41 kyr) is almost absent throughout the section except for a few brief intervals where it has a relatively weak influence. During the course of the Early Paleogene record, and particularly in the latest Paleocene, eccentricity-paced negative carbon-isotope excursions (d13C, CIEs) and coeval negative oxygen-isotope (d18O) excursions correspond to low carbonate (CaCO3) and coarse fraction (%CF) values due to increased carbonate dissolution, suggesting shoaling of the lysocline and accompanied changes in the global exogenic carbon cycle. These negative CIEs and d18O events coincide with maxima in eccentricity, with changes in d18O leading changes in d13C by ~6 (±5) kyr in the 405-kyr band and by ~3 (±1) kyr in the higher frequency 100-kyr band on average. However, these phase lags are not constant, with the lag in the 405-kyr band extending from ~4 (±5) kyr to ~21 (±2) kyr from the late Paleocene to the early Eocene, suggesting a progressively weaker coupling of climate and the carbon-cycle with time. The higher amplitude 405-kyr cycles in the latest Paleocene are associated with changes in bottom water temperature of 2-4ºC, while the most prominent 100 kyr-paced cycles can be accompanied by changes of up to 1.5ºC. Comparison of the 1262 record with a lower resolution, but orbitally-tuned benthic record for Site 1209 in the Pacific allows for verification of key features of the benthic isotope records which are global in scale including a key warming step at 57.7 Ma.