15 resultados para Constant of motion
em Publishing Network for Geoscientific
Resumo:
Critical bed shear stress for incipient motion has been determined for biogenic free-living coralline algae known as maërl. Maërl from three different sedimentary environments (beach, intertidal, and open marine) in Galway Bay, west of Ireland have been analysed in a rotating annular flume and linear flume. Velocity profile measurements of the benthic boundary layer, using an Acoustic Doppler Velocimeter, have been obtained in four different velocity experiments. The bed shear stress has been determined using three methods: Law of the Wall, Turbulent Kinetic Energy and Reynolds Stress. The critical Shields parameter has been estimated as a non-dimensional mobility number and the results have been compared with the Shields curve for natural sand. Maërl particles fall below this curve because its greater angularity allows grains to be mobilised easier than hydraulically equivalent particles. From previous work, the relationship between grain shape and the settling velocity of maërl suggests that the roughness is greatest for intertidal maërl particles. During critical shear stress determinations, beds of such rough particles exhibited the greatest critical shear stress probably because the particle thalli interlocked and resisted entrainment. The Turbulent Kinetic Energy methodology gives the most consistent results, agreeing with previous comparative studies. Rarely-documented maërl megaripples were observed in the rotating annular flume and are hypothesised to form at velocities ~10 cm s-1 higher than the critical threshold velocity, where tidal currents, oscillatory flow or combined-wave current interaction results in the preferential transport of maërl. A determination of the critical bed shear stress of maërl allows its mobility and rate of erosion and deposition to be evaluated spatially in subsequent applications to biological conservation management.
Resumo:
During R/V Meteor-cruise no. 30 4 moorings with 17 current meters were placed on the continental slope of Sierra Leone at depths between 81 and 1058 meters. The observation period started on March 8, 1973, 16.55 hours GMT and lasted 19 days for moorings M30_068MOOR, M30_069MOOR, M30_070MOOR on the slope and 9 days for M30_067MOOR on the shelf. One current meter recorded at location M30_067MOOR for 22 days. Hydrographic data were collected at 32 stations by means of the "Kieler Multi-Meeressonde". Harmonic analysis is applied to the first 15 days of the time series to determine the M2 and S2 tides. By vertically averaging of the Fourier coefficients the field of motion is separated into its barotropic and its baroclinic component. The expected error generated by white Gaussian noise is estimated. To estimate the influence of the particular vertical distribution of the current meters, the barotropic M2 tide is calculated by ommitting and interchanging time series of different moorings. It is shown that only the data of moorings M30_069MOOR, M30_070MOOR and M30_067MOOR can be used. The results for the barotropic M2 tide agree well with the previous publications of other authors. On the slope at a depth of 1000 m there is a free barotropic wave under the influence of the Coriolis-force propagating along the slope with an amplitude of 3.4 cm S**-1. On the shelf, the maximum current is substantially greater (5.8 cm s**-1) and the direction of propagation is perpendicular to the slope. As for the continental slope a separation into different baroclinic modes using vertical eigenmodes is not reasonable, an interpretation of the total baroclinic wave field is tried by means of the method of characteristis. Assuming the continental slope to generate several linear waves, which superpose, baroclinic tidal ellipses are calculated. The scattering of the direction of the major axes M30_069MOOR is in contrast to M30_070MOOR, where they are bundled within an angle of 60°. This is presumably caused by the different character of the bottom topography in the vicinity of the two moorings. A detailed discussion of M30_069MOOR is renounced since the accuracy of the bathymetric chart is not sufficient to prove any relation between waves and topography. The bundeling of the major axes at M30_070MOOR can be explained by the longslope changes of the slope, which cause an energy transfer from the longslope barotropic component to the downslope baroclinic component. The maximum amplitude is found at a depth of 245 m where it is expected from the characteristics originating at the shelf edge. Because of the dominating barotropic tide high coherence is found between most of the current meters. To show the influence of the baroclinic tidal waves, the effect of the mean current is considered. There are two periods nearly opposite longshore mean current. For 128 hours during each of these periods, starting on March 11, 05.00, and March 21, 08.30, the coherences and energy spectra are calculated. The changes in the slope of the characteristics are found in agreement with the changes of energy and coherence. Because of the short periods of nearly constant mean current, some of the calculated differences of energy and coherence are not statistically significant. For the M2 tide a calculation of the ratios of vertically integrated total baroclinic energy and vertically integrated barotropic kinetic energy is carried out. Taking into account both components (along and perpendicular to the slope) the obtained values are 0.75 and 0.98 at the slope and 0.38 at the shelf. If each component is considered separately, the ratios are 0.39 and 1.16 parallel to the slope and 5.1 and 15.85 for the component perpendicular to it. Taking the energy transfer from the longslope component to the doenslope component into account, a simple model yields an energy-ratio of 2.6. Considering the limited application of the theory to the real conditions, the obtained are in agreement with the values calculated by Sandstroem.
Resumo:
Characteristic remanent magnetizations derived from detailed thermal and alternating-field demagnetization of basalts recovered at Ocean Drilling Program (ODP) Site 807 on the Ontong Java Plateau reveal constant normal polarity consistent with paleontological ages from overlying sediments, suggesting deposition in early Aptian times at the beginning of the Cretaceous Normal Polarity Superchron (K-N). The paleomagnetic data can be divided into 14 distinct inclination groups, which together define a paleolatitude of 18°S, some 16° shallower than expected from a Pacific apparent polar wander path (APWP) based on nonsedimentary data. The data display a trend in paleomagnetic inclination, showing shallower values with increasing depth. We conclude that this trend is a result of local tectonic tilting during the waning phases of volcanism on the plateau. Hotspot-based plate reconstructions for the Early Cretaceous place the Ontong Java Plateau on the Louisville hotspot, presently located at 51°S, whereas the paleolatitude for Site 807 based on the Pacific APWP is 34°S. Because the nominal mean inclination from Site 807 and values derived from Deep Sea Drilling Project (DSDP) sediments of other sites predict shallower paleolatitudes for the Ontong Java Plateau, values from the Pacific APWP provide lower bounds on true polar wander. Considering mantle plume sources on the southern and northern portions of the plateau (DSDP Site 288 and ODP Site 807, respectively), the Louisville hotspot appears to have moved 9°-17° to the south relative to the spin axis since the Early Cretaceous. This sense of motion is consistent with previous results for the Suiko Seamount (65 Ma) of the Hawaiian-Emperor Chain.
Resumo:
We conducted an integrated paleomagnetic and rock magnetic study on cores recovered from Ocean Drilling Program Sites 1276 and 1277 of the Newfoundland Basin. Stable components of magnetization are determined from Cretaceous-aged sedimentary and basement cores after detailed thermal and alternating-field demagnetization. Results from a series of rock magnetic measurements corroborate the demagnetization behavior and show that titanomagnetites are the main magnetic carrier. In view of the normal polarity of magnetization and radiometric dates for the sills at Site 1276 (~98 and ~105 Ma, both within the Cretaceous Normal Superchron) and for a gabbro intrusion in peridotite at Site 1277 (~126 Ma, Chron M1), our results suggest that the primary magnetization of the Cretaceous rocks is likely retained in these rocks. The overall magnetic inclination of lithologic Unit 2 in Hole 1277A between 143 and 180 meters below seafloor is 38°, implying significant (~35° counterclockwise, viewed to the north) rotation of the basement around a horizontal axis parallel to the rift axis (010°). The paleomagnetic rotational estimates should help refine models for the tectonic evolution of the basement. The mean inclinations for Sites 1276 and 1277 rocks imply paleolatitudes of 30.3° ± 5.1° and 22.9° ± 12.0°, respectively, with the latter presumably influenced by tectonic rotation. These values are consistent with those inferred from the mid-Cretaceous reference poles for North America, suggesting that the inclination determinations are reliable and consistent with a drill site on a location in the North America plate since at least the mid-Cretaceous. The combined paleolatitude results from Leg 210 sites indicate that the Newfoundland Basin was some 1800 km south of its current position in the mid-Cretaceous. Assuming a constant rate of motion, the paleolatitude data would suggest a rate of 12.1 mm/yr for the interval from ~130 Ma (Site 1276 age) to present, and 19.6 mm/yr for the interval from 126 Ma (Site 1277 age) to recent. The paleolatitude and rotational data from this study are consistent with the possibility that Site 1276 may have passed over the Canary and Madeira hotspots that formed the Newfoundland Seamounts in the mid-Cretaceous.
Resumo:
According to Wilson's (1963a, b) hypothesis, the volcanoes of the Hawaiian-Emperor Chain are formed as the Pacific lithospheric plate moves over a source of magma in the mantle. Morgan (1971, 1972) proposed that these "hot spots" resulted from "mantle plumes" that rise vertically from the core/mantle boundary and that are fixed about the deep mantle and rotating globe poles. The age of volcanoes increases with distance away from the recent "hot spot" beneath Kilauea volcano. The Hawaiian-Emperor bend indicates that the direction of motion of the Pacific plate changed about 40 m.y. ago.
Resumo:
We examine the link between organic matter degradation, anaerobic methane oxidation (AMO), and sulfate depletion and explore how these processes potentially influence dolomitization. We determined rates and depths of AMO and dolomite formation for a variety of organic-rich sites along the west African Margin using data from Ocean Drilling Program (ODP) Leg 175. Rates of AMO are calculated from the diffusive fluxes of CH4 and SO4, and rates of dolomite formation are calculated from the diffusive flux of Mg. We find that the rates of dolomite formation are relatively constant regardless of the depth at which it is forming, indicating that the diffusive fluxes of Mg and Ca are not limiting. Based upon the calculated log IAP values, log K(sp) values for dolomite were found to narrowly range between -16.1 and -16.4. Dolomite formation is controlled in part by competition between AMO and methanogenesis, which controls the speciation of dissolved CO2. AMO increases the concentration of CO3[2-] through sulfate reduction, favoring dolomite formation, while methanogenesis increases the pCO2 of the pore waters, inhibiting dolomite formation. By regulating the pCO2 and alkalinity, methanogenesis and AMO can regulate the formation of dolomite in organic-rich marine sediments. In addition to providing a mechanistic link between AMO and dolomite formation, our findings provide a method by which the stability constant of dolomite can be calculated in modern sediments and allow prediction of regions and depth domains in which dolomite may be forming.
Resumo:
Porewaters in site 680 Peru Margin sediments contain dissolved sulfide over a depth of approximately 70 m which, at a sedimentation rate of 0.005 cm/yr, gives a sediment exposure time to dissolved sulfide of about 1.4 Myr. Reactions with dissolved sulfide cause the site 680 sediments to show a progressive decrease in a poorly-reactive silicate iron fraction, defined as the difference between iron extracted by dithionite (FeD) at room temperature and that extracted by boiling concentrated HCl (FeH), normalised to the total iron content (FeT). Straight line plots are obtained for ln[(FeH - FeD)/FeT] against time of burial, from which a first order rate constant of 0.29 1/Myr (equivalent to a half-life of 2.4 Myr) can be derived for the sulfidation of this silicate iron. Comparable half-lives are also found for the same poorly-reactive iron fraction in the nearby site 681 and 684 sediments. This silicate Fe fraction comprises 0.8-1.0% Fe, only 30-60% of which reacts even with 1.5-3 million years exposure to dissolved sulfide. Diagenetic models based on porewater concentrations of sulfate and sulfide, and solid phase iron contents, at site 680 are consistent in indicating that this poorly-reactive iron fraction is only sulfidized on a million year time scale. Silicate iron not extracted by HCl can be regarded as unreactive towards dissolved sulfide on the time scales encountered in marine sediments.
Resumo:
40Ar-39Ar dating of a high-MgO bronzite andesite from near the top of basement drilled at Site 458 shows the characteristic symptoms of artificially disturbed samples - i.e., an inverse staircase-type age spectrum, approximate linearity on an isochron plot, and concordance between total fusion age and isochron age. From conclusions based on other artificially disturbed samples (Ozima et al., 1979), we suggest that the reference isochron age (33.6 Ma) approximates the age of the sample. A basalt from deeper in Hole 458 gives an isochron age of 19.1 ± 0.2 Ma, which is slightly younger than the plateau age of 21.4 ± 1.0 Ma. Both ages are, however, considerably younger than the age of fossils in the overlying sediments (30 - 34 Ma). The age discrepancy may be explained if the 40Ar-39Ar age represents the age of secondary minerals, which formed later. No useful age data were obtained from a basalt sample recovered from Hole 459B.
Resumo:
Ocean Drilling Program (ODP) Leg 164 recovered a number of large solid gas hydrate from Sites 994, 996, and 997 on the Blake Ridge. Sites 994 and 997 samples, either nodular or thick massive pieces, were subjected to laboratory analysis and measurements to determine the structure, molecular and isotopic composition, thermal conductivity, and equilibrium dissociation conditions. X-ray computed tomography (CT) imagery, X-ray diffraction, nuclear magnetic resonance (NMR), and Raman spectroscopy have revealed that the gas hydrates recovered from the Blake Ridge are nearly 100% methane gas hydrate of Structure I, cubic with a lattice constant of a = 11.95 ± 0.05 angström, and a molar ratio of water to gas (hydration number) of 6.2. The d18O of water is 2.67 per mil to 3.51 per mil SMOW, which is 3.5-4.0 heavier than the ambient interstitial waters. The d13C and dD of methane are -66 per mil to -70 per mil and -201 per mil to -206 per mil, respectively, suggesting that the methane was generated through bacterial CO2 reduction. Thermal conductivity values of the Blake Ridge hydrates range from 0.3 to 0.5 W/(m K). Equilibrium dissociation experiments indicate that the three-phase equilibrium for the specimen is 3.27 MPa at 274.7 K. This is almost identical to that of synthetic pure methane hydrate in freshwater.
Resumo:
Increasing atmospheric CO2 concentrations are potentially affecting marine ecosystems twofold, by warming and acidification. The rising amount of CO2 taken up by the ocean lowers the saturation state of calcium carbonate, complicating the formation of this key biomineral used by many marine organisms to build hard parts like skeletons or shells. Reliable time-series data of seawater pH are needed to evaluate the ongoing change and compare long-term trends and natural variability. For the high-latitude ocean, the region facing the strongest CO2 uptake, such time-series data are so far entirely lacking. Our study provides, to our knowledge, the first reconstruction of seasonal cycle and long-term trend in pH for a high-latitude ocean obtained from 2D images of stable boron isotopes from a coralline alga.
Resumo:
Orbital tuning of benthic d18O is a common approach for assigning ages to ocean sediment records. Similar environmental forcing of the northern South China Sea and the southeast Asian cave regions allows for transfer of the speleothem d18O radiometric chronology to the planktonic and benthic d18O records from Ocean Drilling Program Site 1146, yielding a new chronology with 41 radiometrically calibrated datums, spanning the past 350 kyr. This approach also provides for an independent assessment of the accuracy of the orbitally tuned benthic d18O chronology for the last 350 kyr. The largest differences relative to the latest chronology occur in marine isotope stages (MIS) 5.4, 5.5, 6, 7, and 9.3. Prominent suborbital-scale structure believed to be global in nature is identified within MIS 5.4 and MIS 7.2. On the basis of the radiometrically calibrated chronology, the time constant of the ice sheet is found to be 5.4 kyr at the precession band (light d18O lags precession minima by -55.4°) and 10.4 kyr at the obliquity band (light d18O lags obliquity maxima by 57.4°). These values are significantly shorter than the single 17 kyr time constant originally estimated by Imbrie et al. (1984), based primarily on the timing of terminations I and II and the 15 kyr time constant used by Lisiecki and Raymo (2005, doi:10.1029/2004PA001071).
Resumo:
In mixed sediment beds, erosion resistance can change relative to that of beds composed of a uniform sediment because of varying textural and/or other grain-size parameters, with effects on pore water flow that are difficult to quantify by means of analogue techniques. To overcome this difficulty, a three-dimensional numerical model was developed using a finite difference method (FDM) flow model coupled with a distinct element method (DEM) particle model. The main aim was to investigate, at a high spatial resolution, the physical processes occurring during the initiation of motion of single grains at the sediment-water interface and in the shallow subsurface of simplified sediment beds under different flow velocities. Increasing proportions of very fine sand (D50=0.08 mm) were mixed into a coarse sand matrix (D50=0.6 mm) to simulate mixed sediment beds, starting with a pure coarse sand bed in experiment 1 (0 wt% fines), and proceeding through experiment 2 (6.5 wt% fines), experiment 3 (10.5 wt% fines), and experiment 4 (28.7 wt% fines). All mixed beds were tested for their erosion behavior at predefined flow velocities varying in the range of U 1-5=10-30 cm/s. The experiments show that, with increasing fine content, the smaller particles increasingly fill the spaces between the larger particles. As a consequence, pore water inflow into the sediment is increasingly blocked, i.e., there is a decrease in pore water flow velocity and, hence, in the flow momentum available to entrain particles. These findings are portrayed in a new conceptual model of enhanced sediment bed stabilization.