7 resultados para Confined panel aspect ratio

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Samples recovered from Hole 504B during Leg 140 include a number of medium-grained, holocrystalline diabases that appear to represent the cores of thick dikes. The plagioclase and pyroxene in these samples occur in a variety of crystal morphologies. Plagioclase occurs as phenocrysts, microphenocrysts, elongate crystals, skeletal crystals, and branching radial clusters. Pyroxene occurs as phenocrysts, microphenocrysts, ophitic crystals, and poikilitic crystals. Plagioclase compositions became progressively poorer in anorthite and MgO and progressively richer in FeO as crystallization proceeded, while the average grain volume decreased and the aspect ratio of individual grains increased. Pyroxene compositions are largely independent of crystal morphology. The diabase dikes recovered from Hole 504B during Leg 140 appear to have crystallized in situ. Crystal compositions and morphologies are consistent with a rapid cooling rate and solidification times for individual dikes on the order of hours or days. The crystallization rate and nucleation rate of plagioclase lagged behind the cooling rate so that the degree of undercooling progressively increased as crystallization proceeded. Plagioclase crystal morphologies indicate much greater degrees of supersaturation than do pyroxene or olivine crystal morphologies. The 504B diabase magmas appear to have been emplaced with abundant preexisting pyroxene and olivine nuclei, but with few preexisting plagioclase nuclei. The suppression of plagioclase nucleation and crystallization relative to that of pyroxene and olivine could provide a mechanism by which the actual fractionation assemblage is more pyroxene-rich and plagioclase-poor than that predicted from thermodynamic models, or that observed in isothermal crystallization experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we compared the fluke geometries of male and female narwhals, which may be associated with hydrodynamic effects. Computerized tomography (CT) scanning was used to obtain data for analyses of the three-dimensional geometry of the flukes. The flukes from four narwhals (two males and two females) were obtained from aboriginal hunters in the vicinity of Broughton Island, Canada. The body lengths of the animals ranged from 2.98 to 3.60 m. Both males had erupted, upper left tusks. Standard body measurements were made including the span of the fluke (i.e., linear distance between fluke tips).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Identification of a sediment/basement contact using seismic reflection recordings has proven to be extremely difficult in wide areas of the North Pacific Ocean owing to the presence of massive, highly reflective chert layers within the sediment column. Leg 136 of the Ocean Drilling Program recovered coherent pieces of chert of sufficient size for the first comprehensive laboratory measurements of the seismic properties of this material. Compressional-wave velocities of six samples at 40-MPa confining pressure averaged 5.33 km/s, whereas shear-wave velocities at the same pressure averaged 3.48 km/s. Velocities were independent of porosity, which ranged from 5% to 13%, suggesting that pores within the samples were mostly high aspect ratio vugs as opposed to low aspect ratio cracks. Back-scattered electron images made with a scanning electron microscope confirmed this observation. Acoustic impedances were calculated for the chert samples and from shipboard measurements of the red clay sediment overlying the chert layers. An extremely large compressional-wave reflection coefficient (0.73) characterized the interface between the two lithologies. A synthetic seismogram was calculated using chert and typical pelagic carbonate properties to illustrate the influence of chert layers on a marine seismic-reflection section. Compressional-wave to shear-wave velocity ratios of the chert samples (Vp/Vs =1.53) are close to that of single-crystal quartz in spite of variable porosity. Shear-wave reflection coefficients are estimated to be approximately 0.94. A compressional-wave reflection coefficient for a basement/sediment (carbonate) interface is estimated to be approximately 0.50, significantly less than that of sediment/chert.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flow transverse bedforms (ripples and dunes) are ubiquitous in rivers and coastal seas. Local hydrodynamics and transport conditions depend on the size and geometry of these bedforms, as they constitute roughness elements at the bed. Bedform influence on flow energy must be considered for the understanding of flow dynamics, and in the development and application of numerical models. Common estimations or predictors of form roughness (friction factors) are based mostly on data of steep bedforms (with angle-of-repose lee slopes), and described by highly simplified bedform dimensions (heights and lengths). However, natural bedforms often are not steep, and differ in form and hydraulic effect relative to idealised bedforms. Based on systematic numerical model experiments, this study shows how the hydraulic effect of bedforms depends on the flow structure behind bedforms, which is determined by the bedform lee side angle, aspect ratio and relative height. Simulations reveal that flow separation behind bedform crests and, thus, a hydraulic effect is induced at lee side angles steeper than 11 to 18° depending on relative height, and that a fully developed flow separation zone exists only over bedforms with a lee side angle steeper than 24°. Furthermore, the hydraulic effect of bedforms with varying lee side angle is evaluated and a reduction function to common friction factors is proposed. A function is also developed for the Nikuradse roughness (k s), and a new equation is proposed which directly relates k s to bedform relative height, aspect ratio and lee side angle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large asymmetric bed forms commonly develop in rivers. The turbulence associated with flow separation that develops over their steep lee side is responsible for the form shear stress which can represent a substantial part of total shear stress in rivers. This paper uses the Delft3D modeling system to investigate the effects of bed form geometry and forcing conditions on flow separation length and associated turbulence, and bed form shear stress over angle-of-repose (30 lee side angle) bed forms. The model was validated with lab measurements that showed sufficient agreement to be used for a systematic analysis. The influence of flow velocity, bed roughness, relative height (bed form height/water depth), and aspect ratio (bed form height/length) on the variations of the normalized length of the flow separation zone, the extent of the wake region (where the turbulent kinetic energy (TKE) was more than 70% of the maximum TKE), the average TKE within the wake region and the form shear stress were investigated. Form shear stress was found not to scale with the size of the flow separation zone but to be related to the product of the normalized extent of the wake region (extent of the wake region/extent of water body above the bed form) and the average TKE within the wake region. The results add to understanding of the hydrodynamics of bed forms and may be used for the development of better parameterizations of smallscale processes for application in large-scale studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compressional- and shear-wave velocity logs (Vp and Vs, respectively) that were run to a sub-basement depth of 1013 m (1287.5 m sub-bottom) in Hole 504B suggest the presence of Layer 2A and document the presence of layers 2B and 2C on the Costa Rica Rift. Layer 2A extends from the mudline to 225 m sub-basement and is characterized by compressional-wave velocities of 4.0 km/s or less. Layer 2B extends from 225 to 900 m and may be divided into two intervals: an upper level from 225 to 600 m in which Vp decreases slowly from 5.0 to 4.8 km/s and a lower level from 600 to about 900 m in which Vp increases slowly to 6.0 km/s. In Layer 2C, which was logged for about 100 m to a depth of 1 km, Vp and Vs appear to be constant at 6.0 and 3.2 km/s, respectively. This velocity structure is consistent with, but more detailed than the structure determined by the oblique seismic experiment in the same hole. Since laboratory measurements of the compressional- and shear-wave velocity of samples from Hole 504B at Pconfining = Pdifferential average 6.0 and 3.2 km/s respectively, and show only slight increases with depth, we conclude that the velocity structure of Layer 2 is controlled almost entirely by variations in porosity and that the crack porosity of Layer 2C approaches zero. A comparison between the compressional-wave velocities determined by logging and the formation porosities calculated from the results of the large-scale resistivity experiment using Archie's Law suggest that the velocity- porosity relation derived by Hyndman et al. (1984) for laboratory samples serves as an upper bound for Vp, and the noninteractive relation derived by Toksöz et al. (1976) for cracks with an aspect ratio a = 1/32 serves as a lower bound.