212 resultados para Composite models of particles

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we present an improved astronomical timescale since 5 Ma as recorded in the ODP Site 1143 in the southern South China Sea, using a recently published Asian summer monsoon record (hematite to goethite content ratio, Hm/Gt) and a parallel benthic d18O record. Correlation of the benthic d18O record to the stack of 57 globally distributed benthic d18O records (LR04 stack) and the Hm/Gt curve to the 65°N summer insolation curve is a particularly useful approach to obtain refined timescales. Hence, it constitutes the basis for our effort. Our proposed modifications result in a more accurate and robust chronology than the existing astronomical timescale for the ODP Site 1143. This updated timescale further enables a detailed study of the orbital variability of low-latitude Asian summer monsoon throughout the Plio-Pleistocene. Comparison of the Hm/Gt record with the d18O record from the same core reveals that the oscillations of low-latitude Asian summer monsoon over orbital scales differed considerably from the glacial-interglacial climate cycles. The popular view that summer monsoon intensifies during interglacial stages and weakens during glacial stages appears to be too simplistic for low-latitude Asia. In low-latitude Asia, some strong summer monsoon intervals appear to have also occurred during glacial stages in addition to their increased occurrence during interglacial stages. Vice versa, some notably weak summer monsoon intervals have also occurred during interglacial stages next to their anticipated occurrence during glacial stages. The well-known mid-Pleistocene transition (MPT) is only identified in the benthic d18O record but not in the Hm/Gt record from the same core. This suggests that the MPT may be a feature of high- and middle-latitude climates, possibly determined by high-latitude ice sheet dynamics. For low-latitude monsoonal climate, its orbital-scale variations respond more directly to insolation and are little influenced by high-latitude processes, thus the MPT is likely not recorded. In addition, the Hm/Gt record suggests that low-latitude Asian summer monsoon intensity has a long-term decreasing trend since 2.8 Ma with increased oscillation amplitude. This long-term variability is presumably linked to the Northern Hemisphere glaciation since then.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pliocene and Pleistocene sediments of the Oman margin and Owen Ridge are characterized by continuous alternation of light and dark layers of nannofossil ooze and marly nannofossil ooze and cyclic variation of wet-bulk density. Origin of the wet-bulk density and color cycles was examined at Ocean Drilling Program Site 722 on the Owen Ridge and Site 728 on the Oman margin using 3.4-m.y.-long GRAPE (gamma ray attenuation) wet-bulk density records and records of sediment color represented as changes in gray level on black-and-white core photographs. At Sites 722 and 728 sediments display a weak correlation of decreasing wet-bulk density with increasing darkness of sediment color. Wet-bulk density is inversely related to organic carbon concentration and displays little relation to calcium carbonate concentration, which varies inversely with the abundance of terrigenous sediment components. Sediment color darkens with increasing terrigenous sediment abundance (decreasing carbonate content) and with increasing organic carbon concentration. Upper Pleistocene sediments at Site 722 display a regular pattern of dark colored intervals coinciding with glacial periods, whereas at Site 728 the pattern of color variation is more irregular. There is not a consistent relationship between the dark intervals and their relative wet-bulk density in the upper Pleistocene sections at Sites 722 and 728, suggesting that dominance of organic matter or terrigenous sediment as primary coloring agents varies. Spectra of wet-bulk density and optical density time series display concentration of variance at orbital periodicities of 100, 41, 23, and 19 k.y. A strong 41-k.y. periodicity characterizes wet-bulk density and optical density variation at both sites throughout most of the past 3.4 m.y. Cyclicity at the 41-k.y. periodicity is characterized by a lack of coherence between wet-bulk density and optical density suggesting that the bulk density and color cycles reflect the mixed influence of varying abundance of terrigenous sediments and organic matter. The 23-k.y. periodicity in wet-bulk density and sediment color cycles is generally characterized by significant coherence between wet-bulk density and optical density, which reflects an inverse relationship between these parameters. Varying organic matter abundance, associated with changes in productivity or preservation, is inferred to more strongly influence changes in wet-bulk density and sediment color at this periodicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A continuous age model for the brief climate excursion at the Paleocene-Eocene boundary has been constructed by assuming a constant flux of extraterrestrial 3He (3He[ET]) to the seafloor. 3He[ET] measurements from ODP Site 690 provide quantitative evidence for the rapid onset (of global warming and of the associated disturbance to the Earth's surficial carbon budget at this time. These observations support astronomically calibrated age models indicating extremely rapid release of isotopically light carbon, possibly from seafloor methane hydrate, as the proximal cause of the event. However, the 3He[ET] technique indicates a previously unrecognized and extreme increase in sedimentation rate coincident with the return of climate proxies to pre-event values. The 3He[ET]-based age model thus suggests a far more rapid recovery from the climatic perturbation than previously proposed or predicted on the basis of the modern carbon cycle, and so may indicate additional or accelerated mechanisms of carbon removal from the ocean-atmosphere system during this period. 3He[ET] was also measured at ODP Site 1051 to test the validity of the Site 690 chronology. Comparison of these data sets seems to require removal of several tens of kyr of sediment within the climatic excursion at Site 1051, an observation consistent with sediment structures and previous age modeling efforts. The Site 1051 age model shows a ~30 kyr period in which climate proxies return toward pre-event values, after which they remain invariant for ~80 kyr. If this rise represents the recovery interval identified at Site 690, then the 3HeET-based age models of the two sites are in good agreement. However, alternative interpretations are possible, and work on less disrupted sites is required to evaluate the reliability of the proposed new chronology of the climate excursion. Regardless of these details, this work shows that the 3HeET technique can provide useful independent evidence for the development and testing of astronomically calibrated age models.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The flux of materials to the deep sea is dominated by larger, organic-rich particles with sinking rates varying between a few meters and several hundred meters per day. Mineral ballast may regulate the transfer of organic matter and other components by determining the sinking rates, e.g. via particle density. We calculated particle sinking rates from mass flux patterns and alkenone measurements applying the results of sediment trap experiments from the Atlantic Ocean. We have indication for higher particle sinking rates in carbonate-dominated production systems when considering both regional and seasonal data. During a summer coccolithophorid bloom in the Cape Blanc coastal upwelling off Mauritania, particle sinking rates reached almost 570 m per day, most probably due the fast sedimentation of densely packed zooplankton fecal pellets, which transport high amounts of organic carbon associated with coccoliths to the deep ocean despite rather low production. During the recurring winter-spring blooms off NW Africa and in opal-rich production systems of the Southern Ocean, sinking rates of larger particles, most probably diatom aggregates, showed a tendency to lower values. However, there is no straightforward relationship between carbonate content and particle sinking rates. This could be due to the unknown composition of carbonate and/or the influence of particle size and shape on sinking rates. It also remains noticeable that the highest sinking rates occurred in dust-rich ocean regions off NW Africa, but this issue deserves further detailed field and laboratory investigations. We obtained increasing sinking rates with depth. By using a seven-compartment biogeochemical model, it was shown that the deep ocean organic carbon flux at a mesotrophic sediment trap site off Cape Blanc can be captured fairly well using seasonal variable particle sinking rates. Our model provides a total organic carbon flux of 0.29 Tg per year down to 3000 m off the NW African upwelling region between 5 and 35° N. Simple parameterisations of remineralisation and sinking rates in such models, however, limit their capability in reproducing the flux variation in the water column.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sedimentary sections of three cores from the Celtic margin provide high-resolution records of the terrigenous fluxes during the last glacial cycle. A total of 21 14C AMS dates allow us to define age models with a resolution better than 100 yr during critical periods such as Heinrich events 1 and 2. Maximum sedimentary fluxes occurred at the Meriadzek Terrace site during the Last Glacial Maximum (LGM). Detailed X-ray imagery of core MD95-2002 from the Meriadzek Terrace shows no sedimentary structures suggestive of either deposition from high-density turbidity currents or significant erosion. Two paroxysmal terrigenous flux episodes have been identified. The first occurred after the deposition of Heinrich event 2 Canadian ice-rafted debris (IRD) and includes IRD from European sources. We suggest that the second represents an episode of deposition from turbid plumes, which precedes IRD deposition associated with Heinrich event 1. At the end of marine isotopic stage 2 (MIS 2) and the beginning of MIS 1 the highest fluxes are recorded on the Whittard Ridge where they correspond to deposition from turbidity current overflows. Canadian icebergs have rafted debris at the Celtic margin during Heinrich events 1, 2, 4 and 5. The high-resolution records of Heinrich events 1 and 2 show that in both cases the arrival of the Canadian icebergs was preceded by a European ice rafting precursor event, which took place about 1-1.5 kyr before. Two rafting episodes of European IRD also occurred immediately after Heinrich event 2 and just before Heinrich event 1. The terrigenous fluxes recorded in core MD95-2002 during the LGM are the highest reported at hemipelagic sites from the northwestern European margin. The magnitude of the Canadian IRD fluxes at Meriadzek Terrace is similar to those from oceanic sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent geochemical models invoke ocean alkalinity changes, particularly in the surface Southern Ocean, to explain glacial age pCO2 reduction. In such models, alkalinity increases in glacial periods are driven by reductions in North Atlantic Deep Water (NADW) supply, which lead to increases in deep-water nutrients and dissolution of carbonate sediments, and to increased alkalinity of Circumpolar Deep Water upwelling in the surface Southern Ocean. We use cores from the Southeast Indian Ridge and from the deep Cape Basin in the South Atlantic to show that carbonate dissolution was enhanced during glacial stages in areas now bathed by Circumpolar Deep Water. This suggests that deep Southern Ocean carbonate ion concentrations were lower in glacial stages than in interglacials, rather than higher as suggested by the polar alkalinity model [Broecker and Peng, 1989, doi:10.1029/GB001i001p00015]. Our observations show that changes in Southern Ocean CaCO3 preservation are coherent with changes in the relative flux of NADW, suggesting that Southern Ocean carbonate chemistry is closely linked to changes in deepwater circulation. The pattern of enhanced dissolution in glacials is consistent with a reduction in the supply of nutrient-depleted water (NADW) to the Southern Ocean and with an increase of nutrients in deep water masses. Carbonate mass accumulation rates on the Southeast Indian Ridge (3200-3800 m), and in relatively shallow cores (<3000 m) from the Kerguelen Plateau and the South Pacific were significantly reduced during glacial stages, by about 50%. The reduced carbonate mass accumulation rates and enhanced dissolution during glacials may be partly due to decreases in CaCO3:Corg flux ratios, acting as another mechanism which would raise the alkalinity of Southern Ocean surface waters. The polar alkalinity model assumes that the ratio of organic carbon to carbonate production on surface alkalinity is constant. Even if overall productivity in the Southern Ocean were held constant, a decrease in the CaCO3:Corg ratio would result in increased alkalinity and reduced pCO2 in Southern Ocean surface waters during glacials. This ecologically driven surface alkalinity change may enhance deepwater-mediated changes in alkalinity, and amplify rapid changes in pCO2.