3 resultados para Complexity analyses
em Publishing Network for Geoscientific
Resumo:
We present a first combined environmental magnetic and geochemical investigation of a loess-paleosol sequence (<55 ka) from the Chuanxi Plateau on the eastern margin of the Tibetan Plateau. Detailed comparison between the Ganzi section and the Luochuan section from the Chinese Loess Plateau (CLP) allows quantification of the effects of provenance and climate on pedogenic magnetic enhancement in Chinese loess. Rare earth element patterns and clay mineral compositions indicate that the Ganzi loess originates from the interior of the Tibetan Plateau. The different Ganzi and CLP loess provenances add complexity to interpretation of magnetic parameters in terms of the concentration and grain size of eolian magnetic minerals. Enhanced paleosol magnetism via pedogenic formation of ferrimagnetic nanoparticles is observed in both sections, but weaker ferrimagnetic contributions, finer superparamagnetic (SP) particles and stronger chemical weathering are found in the Ganzi loess, which indicates the action of multiple pedogenic processes that are dominated by the combined effects of mean annual precipitation (MAP), potential evapotranspiration (PET), organic matter and aluminium content. Under relatively high MAP and low PET conditions, high soil moisture favours transformation of ferrimagnetic minerals to hematite, which results in a relatively higher concentration of hematite but weaker ferrimagnetism of Ganzi loess. Initial growth of superparamagnetic (SP) particles is also documented in the incipient loess at Ganzi, which directly reflects the dynamic formation of nano-sized pedogenic ferrimagnets. A humid pedogenic environment with more organic matter and higher Al content also helps to form finer SP particles. We therefore propose that soil water balance, rather than solely rainfall, dominates the type, concentration and grain size of secondary ferrimagnetic minerals produced by pedogenesis.
Resumo:
Basalts from DSDP Sites 248, 249, 250 and 251 in the southwestern Indian Ocean formed in a complex tectonic region affected by the separation of Africa and South America. The different ages and variable geochemical features of these DSDP basalts probably reflect this tectonic complexity. For example, Site 251 on the flanks of the Southwest Indian Ridge is represented by normal MORB which probably originated at the Southwest Indian Ridge. Site 250 in the Mozambique Basin includes an older incompatible- element enriched unit which may represent basalt associated with the Prince Edward Fracture Zone; the upper unit is normal MORB. Basalts at Site 248 also in the Mozambique Basin are geochemically very unlike MORB and have strong continental affinities; they are also comparable in age to some of the continental Karroo basalts. They appear to be related to a subcontinental mantle source or to contamination by continental basement associated with the tectonic elevation of the Mozambique Ridge. Basalts from Site 249 on the Mozambique Ridge are relatively weathered but appear to be normal MORB. Their age, location, and composition are consistent with their origin at an early Cretaceous rift which has been postulated to have separated the Falkland Plateau from the Mozambique Ridge.
(Table 1) Sample descriptions and results: Carbon, lipid, and kerogen analyses, at DSDP Leg 64 Holes
Resumo:
Pleistocene sediments in the Guaymas Basin, Gulf of California, have been intruded by sills and their organic matter thus subjected to thermal stress. Sediment samples from DSDP/IPOD Sites 477, 478, and 481, and samples of thermally unaltered materials from Sites 474 and 479 were analyzed to characterize the lipids and kerogens and to evaluate the effects of the intrusive thermal stresses. The lipids of the thermally unaltered samples are derived from microbial and terrestrial higher-plant detritus. The samples from the sill proximities contain the distillates, and those adjacent to the sills contain essentially no lipids. The pyrograms of the kerogens from the unaltered samples reflect their predominantly autochthonous microbial origin. When compared with the unaltered samples, the pyrograms of the altered kerogen samples reflect the thermal effects by a reduction in the complexity of the products. Kerogens adjacent to the sills produced little or no pyrolysis products. The effects of intrusions into unconsolidated, wet sediments resulted in in situ pyrolysis of the organic matter, as confirmed by these data.