8 resultados para Complex Symbolic Sequence
em Publishing Network for Geoscientific
Resumo:
Stockwork-like metal sulfide mineralizations were found at 910-928 m below seafloor (BSF) in the pillow/dike transition zone of Hole 504B. This is the same interval where most physical properties of the 5.9-m.y.-old crust of the Costa Rica Rift change from those characteristic of Layer 2B to those of Layer 2C. The pillow lavas, breccias, and veins of the stockwork-like zone were studied by transmitted and reflected light microscopy, X-ray diffraction, and electron microprobe analysis. Bulk rock oxygen isotopic analyses as well as isolated mineral oxygen and sulfur isotopic analyses and fluid inclusion measurements were carried out. A complex alteration history was reconstructed that includes three generations of fissures, each followed by precipitation of characteristic hydrothermal mineral parageneses: (1) Minor and local deposition of quartz occurred on fissure walls; adjacent wall rocks were silicified, followed by formation of chlorite and minor pyrite I in the veins, whereas albite, sphene, chlorite and chlorite-expandable clay mixtures, actinolite, and pyrite replaced igneous phases in the host rocks. The hydrothermal fluids responsible for this first stage were probably partially reacted seawater, and their temperatures were at least 200-250° C. (2) Fissures filled during the first stage were reopened and new cracks formed. They were filled with quartz, minor chlorite and chlorite-expandable clay mixtures, traces of epidote, common pyrite, sphalerite, chalcopyrite, and minor galena. During the second stage, hydrothermal fluids were relatively evolved metal- and Si-rich solutions whose temperatures ranged from 230 to 340° C. The fluctuating chemical composition and temperature of the solutions produced a complex depositional sequence of sulfides in the veins: chalcopyrite I, ± Fe-rich sphalerite, chalcopyrite II ("disease"), Fe-poor sphalerite, chalcopyrite III, galena, and pyrite II. (3) During the last stage, zeolites and Mg-poor calcite filled up the remaining spaces and newly formed cracks and replaced the host rock plagioclase. Analcite and stilbite were first to form in veins, possibly at temperatures below 200°C; analcite and earlier quartz were replaced by laumontite at 250°C, whereas calcite formation temperature ranged from 135 to 220°C. The last stage hydrothermal fluids were depleted in Mg and enriched in Ca and 18O compared to seawater and contained a mantle carbon component. This complex alteration history paralleling a complex mineral paragenesis can be interpreted as the result of a relatively long-term evolution of a hydrothermal system with superimposed shorter term fluctuations in solution temperature and composition. Hydrothermal activity probably began close to the axis of the Costa Rica Rift with the overall cooling of the system and multiple fracturing stages due to movement of the crust away from the axis and/or cooling of a magmatic heat source.
Resumo:
We document the first-known Mesoproterozoic ophiolite from the southwestern part of the Amazon craton, corresponding to the Trincheira Complex of Calymmian age, and propose a tectonic model that explains many previously enigmatic features of the Precambrian history of this key craton, and discuss its role in the reconstruction of the Columbia supercontinent. The complex comprises extrusive rocks (fine-grained amphibolites derived from massive and pillowed basalts), mafic-ultramafic intrusive rocks, chert, banded iron formation (BIFs), pelites, psammitic and a smaller proportion of calc-silicate rocks. This sequence was deformed, metasomatized and metamorphosed during the development of the Alto Guaporé Belt, a Mesoproterozoic accretionary orogen. The rocks were deformed by a single tectonic event, which included isoclinal folding and metamorphism of the granulite-amphibolite facies. Layered magmatic structures were preserved in areas of low strain, including amygdaloidal and cumulate structures. Metamorphism was pervasive and reached temperatures of 780-853°C in mafic granulites and 680-720°C in amphibolites under an overall pressure of 6.8 kbar. The geochemical composition of the extrusive and intrusive rocks indicates that all noncumulus mafic-ultramafic rocks are tholeiitic basalts. The mafic-ultramafic rocks display moderately to strongly fractionation of light rare earth elements (LREE), near-flat heavy rare earth elements (HREE) patterns and moderate to strong negative high field strength elements (HFSE) anomalies (especially Nb), a geochemical signature typical of subduction zones. The lowest units of mafic granulites and porphyroblastic amphibolites in the Trincheira ophiolite are similar to the modern mid-ocean ridge basalt (MORB), although they locally display small Ta, Ti and Nb negative anomalies, indicating a small subduction influence. This behavior changes to an island arc tholeiites (IAT) signature in the upper units of fine-grained amphibolites and amphibole rich-amphibolites, characterized by progressive depletion in the incompatible elements and more pronounced negative Ta and Nb anomalies, as well as common Ti and Zr negative anomalies. Tectono-magmatic variation diagrams and chondrite-normalized REE and primitive mantle normalized patterns suggest a back-arc to intra-oceanic island arc tectonic regime for the eruption of these rocks. Therefore, the Trincheira ophiolite appears to have originated in an intraoceanic supra-subduction setting composed of an arc-back-arc system. Accordingly, the Trincheira Complex is a record of oceanic crust relics obducted during the collision of the Amazon craton and the Paraguá block during the Middle Mesoproterozoic. Thus, the recognition of the Trincheira ophiolite and suture significantly changes views on the evolution of the southern margin of the Amazon craton, and how it can influence the global tectonics and the reconstruction of the continents.
Resumo:
Sixty-three samples representing 379 m of sheeted dikes from Deep Sea Drilling Project/Ocean Drilling Program Site 504B have been analyzed for major and selected trace elements by X-ray fluorescence. The samples range from microcrystalline aphyric basalts to moderately phyric (2%-10% phenocrysts) diabase that are typically multiply saturated with plagioclase, olivine, and clinopyroxene, in order of relative abundance. All analyzed samples are classified as Group D compositions with moderate to slightly elevated compatible elements (MgÆ-value = 0.65% ± 0.03%; Al2O3 = 15.5% ± 0.8%; CaO = 13.0% ± 0.3%; Ni = 114 ± 29 ppm), and unusually depleted levels of moderate to highly incompatible elements (Nb < 1 ppm; Zr = 44 ± 7 ppm; Rb < 0.5 ppm; Ba ~ 1 ppm; P2O5 = 0.07% ± 0.02%). These compositions are consistent with a multistage melting of a normal ocean ridge basaltic mantle source followed by extensive fractionation of olivine, plagioclase, and clinopyroxene. Leg 140 aphyric to sparsely phyric (0%-2% phenocrysts) basalts and diabases are compositionally indistinguishable from similarly phyric samples at higher levels in the hole. An examination of the entire crustal section, from the overlying volcanics through the sheeted dikes observed in Leg 140, reveals no significant trends indicating the enrichment or depletion of Costa Rica Rift Zone source magmas over time. Similarly, significant trends toward increased or decreased differentiation cannot be identified, although compositional patterns reflecting variable amounts of phenocryst addition are apparent at various depths. Below ? 1700 mbsf to the bottom of the Leg 140 section, there is a broadly systematic pattern of Zn depletion with depth, the result of high-temperature hydrothermal leaching. This zone of depletion is thought to be a significant source of Zn for the hydrothermal fluids depositing metal sulfides at ridge-crest hydrothermal vents and the sulfide-mineralization zone, located in the transition between pillow lavas and sheeted dikes. Localized zones of intense alteration (60%-95% recrystallization) are present on a centimeter to meter scale in many lithologic units. Within these zones, normally immobile elements Ti, Zr, Y, and rare-earth elements are strongly depleted compared with "fresher" samples centimeters away. The extent of compositional variability of these elements tends to obscure primary igneous trends if the highly altered samples are not identified or removed. At levels up to 40% (or possibly 60%) recrystallization, Ti, Zr, and Y retain their primary signatures. Although the mechanisms are unclear, it is possible that these intense alteration zones are a source of Y and rare-earth elements for the typically rare-earth-element-enriched hydrothermal vent fluids of mid-ocean ridges.
Resumo:
Alteration of sheeted dikes exposed along submarine escarpments at the Pito Deep Rift (NE edge of the Easter microplate) provides constraints on the crustal component of axial hydrothermal systems at fast spreading mid-ocean ridges. Samples from vertical transects through the upper crust constrain the temporal and spatial scales of hydrothermal fluid flow and fluid-rock reaction. The dikes are relatively fresh (average extent of alteration is 27%), with the extent of alteration ranging from 0 to >80%. Alteration is heterogeneous on scales of tens to hundreds of meters and displays few systematic spatial trends. Background alteration is amphibole-dominated, with chlorite-rich dikes sporadically distributed throughout the dike complex, indicating that peak temperatures ranged from <300°C to >450°C and did not vary systematically with depth. Dikes locally show substantial metal mobility, with Zn and Cu depletion and Mn enrichment. Amphibole and chlorite fill fractures throughout the dike complex, whereas quartz-filled fractures and faults are only locally present. Regional variability in alteration characteristics is found on a scale of <1-2 km, illustrating the diversity of fluid-rock interaction that can be expected in fast spreading crust. We propose that much of the alteration in sheeted dike complexes develops within broad, hot upwelling zones, as the inferred conditions of alteration cannot be achieved in downwelling zones, particularly in the shallow dikes. Migration of circulating cells along rides axes and local evolution of fluid compositions produce sections of the upper crust with a distinctive character of alteration, on a scale of <1-2 km and <5-20 ka.
Resumo:
Authigenic carbonates forming at an active methane-seep on the Makran accretionary prism mainly consist of aragonite in the form of microcrystalline, cryptocrystalline, and botryoidal phases. The d13Ccarbonate values are very negative (-49.0 to -44.0 per mill V-PDB), agreeing with microbial methane as dominant carbon source. The d18Ocarbonate values are exclusively positive (+ 3.0 to + 4.5 per mill V-PDB) and indicate precipitation in equilibrium with seawater at bottom water temperatures. The content of rare earth elements and yttrium (REE + Y) determined by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and solution ICP-MS varies for each aragonite variety, with early microcrystalline aragonite yielding the highest, cryptocrystalline aragonite intermediate, and later botryoidal aragonite the lowest REE + Y concentrations. Shale-normalised REE + Y patterns of different types of authigenic carbonate reflect distinct pore fluid compositions during precipitation: Microcrystalline aragonite shows high contents of middle rare earth elements (MREE), reflecting REE patterns ascribed to anoxic pore water. Cryptocrystalline aragonite exhibits a seawater-like REE + Y pattern at elevated total REE + Y concentrations, indicating higher concentrations of REEs in pore waters, which were influenced by seawater. Botryoidal aragonite is characterised by seawater-like REE + Y patterns at initial growth stages followed by an increase of light rare earth elements (LREE) with advancing crystal growth, reflecting changing pore fluid composition during precipitation of this cement. Conventional sample preparation involving micro-drilling of carbonate phases and subsequent solution ICP-MS does not allow to recognise such subtle changes in the REE + Y composition of individual carbonate phases. To be able to reconstruct the evolution of pore water composition during early diagenesis, an analytical approach is required that allows to track the changing elemental composition in a paragenetic sequence as well as in individual phases. High-resolution analysis of seep carbonates from the Makran accretionary prism by LA-ICP-MS reveals that pore fluid composition not only evolved in the course of the formation of different phases, but also changed during the precipitation of individual phases.
Resumo:
The impact of ocean acidification (OA) on coral calcification, a subject of intense current interest, is poorly understood in part because of the presence of symbionts in adult corals. Early life history stages of Acropora spp. provide an opportunity to study the effects of elevated CO(2) on coral calcification without the complication of symbiont metabolism. Therefore, we used the Illumina RNAseq approach to study the effects of acute exposure to elevated CO(2) on gene expression in primary polyps of Acropora millepora, using as reference a novel comprehensive transcriptome assembly developed for this study. Gene ontology analysis of this whole transcriptome data set indicated that CO(2) -driven acidification strongly suppressed metabolism but enhanced extracellular organic matrix synthesis, whereas targeted analyses revealed complex effects on genes implicated in calcification. Unexpectedly, expression of most ion transport proteins was unaffected, while many membrane-associated or secreted carbonic anhydrases were expressed at lower levels. The most dramatic effect of CO(2) -driven acidification, however, was on genes encoding candidate and known components of the skeletal organic matrix that controls CaCO(3) deposition. The skeletal organic matrix effects included elevated expression of adult-type galaxins and some secreted acidic proteins, but down-regulation of other galaxins, secreted acidic proteins, SCRiPs and other coral-specific genes, suggesting specialized roles for the members of these protein families and complex impacts of OA on mineral deposition. This study is the first exhaustive exploration of the transcriptomic response of a scleractinian coral to acidification and provides an unbiased perspective on its effects during the early stages of calcification.
Resumo:
Drilling during Legs 137 and 140 of the Ocean Drilling Program deepened Hole 504B, the only hole to penetrate through the volcanic section and into the underlying hydrothermally altered sheeted dike complex, by 438.1 m to a total depth of 2000.4 meters below seafloor. This paper presents the secondary mineralogy, bulk-rock sulfur contents, and stable isotopic (O, S) compositions, plus oxygen isotopic compositions of secondary minerals from the lower sheeted dike complex drilled during Legs 137 and 140. Various evidence indicates higher temperatures of hydrothermal alteration in the lower dikes than in the upper dikes, including: the local presence of secondary clinopyroxene in the lower dikes; secondary anorthite and hornblende in the lower dikes vs. mainly actinolite and albite-oligoclase in the upper dikes; generally increasing Al and Ti contents of amphibole downward in the dike section; and greater 18O depletions of the lower dikes (d18O = 3.6-5.0 per mil) compared with the upper dikes. Early high-temperature alteration stages (T = 350°-500°C) resulted in 18O depletions and losses of metals (Cu, Zn) and sulfur from the rocks. Local incorporation of reduced seawater sulfate led to elevated d34S values of sulfide in the rocks (up to 2.5 per mil). Quartz + epidote formed in crosscutting veins at temperatures of 310°-320°C from more evolved fluids (d18O = 1 per mil). Late-stage lower-temperature (~250°C) reactions producing albite, prehnite, and zeolites in the rocks caused slight 18O enrichments, but these were insufficient to offset the 18O depletions caused by earlier higher-temperature reactions. Addition of anhydrite to the rocks during seawater recharge led to increased S contents of rocks that had previously lost S during axial hydrothermal alteration, and to further increases in d34S values of total S in the rocks (up to 12 per mil). Despite the evidence for seawater recharge to near the base of the sheeted dike complex, the paucity of late zeolites in the lower dikes suggests that late-stage, off-axis circulation was mainly restricted to the volcanics and shallowest dikes, or to localized high-permeability zones (faults) at depth.
Resumo:
Rocks of the lower sheeted dike complex of Hole 504B sampled during Leg 140 were analyzed for major and trace element compositions to investigate the effects of igneous processes and hydrothermal alteration on the compositions of the rocks. The rocks are relatively uniform in composition and similar to the shallower dikes. They are moderately evolved mid-ocean-ridge basalts (MORB) with relatively high MgO (7.9-10 wt%) and Mg# (0.60-0.70), and have unusually low incompatible element contents (TiO2 = 0.42-1.1 wt%, Zr = 23-62 ppm). Discrete compositional intervals in the hole reflect varying degrees of differentiation, and olivine and plagioclase accumulation in the rocks, and may be related to injection of packets of dikes having similar compositions. Systematic depletions of total REE, Zr, Y, TiO2, and P2O5 in centimeter-size patches are most likely attributed to exclusion of highly differentiated, late-stage interstitial liquids from small portions of the rocks. The rocks exhibit increased H2O+ reflecting hydrothermal alteration. Replacement of primary plagioclase by albite and oligoclase led to local gains of Na2O, losses of CaO, and slightly positive Eu anomalies. Some mobility of P2O5 led to minor increases and decreases in P2O5 contents, and some local mobility of Ti may have occurred during alteration of titanomagnetite to titanite. Higher temperatures of alteration in the lower sheeted dikes led to breakdown of pyroxene and sulfide minerals and losses of Zn, Cu, and S to hydrothermal fluids. Later addition of anhydrite to the rocks in microfractures and replacing plagioclase caused local increases in sulfur contents. The lower sheeted dikes are a major source of metals to hydrothermal fluids for the formation of metal sulfide deposits on and within the seafloor.