3 resultados para Complex Intervals

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pattern of ichthyolith distribution established in sequences with stratigraphies based on calcareous or siliceous microfossils is used to provide age correlations for three deep-sea pelagic clay intervals that lack the better known microfossils. At Site 637, approximately 25 m of brown clay in Cores 103-637A-21R through 103-637A-23R underlies upper Miocene sediments and is of Paleocene to early Eocene age. At Site 639, 1.7 m of brown clay in Core 103-639C-2R is Eocene to Oligocene. At Site 640, 3.5 m of clay in Cores 103-640A-1R and 103-640A-2R contains a Cretaceous to Paleocene sequence, with the Cretaceous/Tertiary boundary between 84 and 103 cm in Section 103-640A-2R-1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dolerites sampled from the lower sheeted dikes from Hole 504B during Ocean Drilling Program Legs 137 and 140, between 1562.4 and 2000.4 mbsf, were examined to document the mineralogy, petrography, and mineral parageneses associated with secondary alteration, to constrain the thermal history and composition of hydrothermal fluids. The main methods used were mineral chemical analyses by electron microprobe, X-ray diffraction, and cathodoluminescence microscopy. Temperatures of alteration were estimated on the basis of single and/or coexisting mineral chemistry. Permeability is important in controlling the type and extent of alteration in the studied dike section. At the meter-scale, intervals of weakly altered dolerites containing fresh olivine are interpreted as having experienced restricted exposure to hydrothermal fluids. At the centimeter- or millimeter-scale, alteration patches and extensively altered halos adjacent to veins reflect the permeability related to intergranular primary porosity and cracks. Most of the sheeted dike alteration in this case resulted from non-focused, pervasive fluid-rock interaction. This study confirms and extends the previous model for hydrothermal alteration at Hole 504B: hydrothermal alteration at the ridge axis followed by seawater recharge and off-axis alteration. The major new discoveries, all related to higher temperatures of alteration, are: (1) the presence of hydrothermal plagioclase (An80-95), (2) the presence of deuteric and/or hydrothermal diopside, and (3) the general increasing proportion of amphiboles, and particularly magnesio-hornblende with depth. We propose that the dolerites at Hole 504B were altered in five stages. Stage 1 occurred at high temperatures (less than 500° to 700°C) and involved late-magmatic formation of Na- and Ti-rich diopside, the hydrothermal formation of Na, Ti-poor diopside and the hydrothermal formation of an assemblage of An-rich plagioclase + hornblende. Stage 2 occurred at lower temperatures (250°-320°C) and is characterized by the appearance of actinolite, chlorite, chlorite-smectite, and/or talc (in low permeability zones) and albite. During Stage 3, quartz and epidote precipitated from evolved hydrothermal fluids at temperatures between 310° and 320°C. Anhydrite appeared during Stage 4 and likely precipitated directly from heated seawater. Stage 5 occurred off-axis at low temperatures (250°C) with laumontite and prehnite from evolved fluids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rocks of the lower sheeted dike complex of Hole 504B sampled during Leg 140 were analyzed for major and trace element compositions to investigate the effects of igneous processes and hydrothermal alteration on the compositions of the rocks. The rocks are relatively uniform in composition and similar to the shallower dikes. They are moderately evolved mid-ocean-ridge basalts (MORB) with relatively high MgO (7.9-10 wt%) and Mg# (0.60-0.70), and have unusually low incompatible element contents (TiO2 = 0.42-1.1 wt%, Zr = 23-62 ppm). Discrete compositional intervals in the hole reflect varying degrees of differentiation, and olivine and plagioclase accumulation in the rocks, and may be related to injection of packets of dikes having similar compositions. Systematic depletions of total REE, Zr, Y, TiO2, and P2O5 in centimeter-size patches are most likely attributed to exclusion of highly differentiated, late-stage interstitial liquids from small portions of the rocks. The rocks exhibit increased H2O+ reflecting hydrothermal alteration. Replacement of primary plagioclase by albite and oligoclase led to local gains of Na2O, losses of CaO, and slightly positive Eu anomalies. Some mobility of P2O5 led to minor increases and decreases in P2O5 contents, and some local mobility of Ti may have occurred during alteration of titanomagnetite to titanite. Higher temperatures of alteration in the lower sheeted dikes led to breakdown of pyroxene and sulfide minerals and losses of Zn, Cu, and S to hydrothermal fluids. Later addition of anhydrite to the rocks in microfractures and replacing plagioclase caused local increases in sulfur contents. The lower sheeted dikes are a major source of metals to hydrothermal fluids for the formation of metal sulfide deposits on and within the seafloor.