3 resultados para Competitive ratio for multiprocessor resource sharing
em Publishing Network for Geoscientific
Resumo:
Natural gas hydrates are clathrates in which water molecules form a crystalline framework that includes and is stabilized by natural gas (mainly methane) at appropriate conditions of high pressures and low temperatures. The conditions for the formation of gas hydrates are met within continental margin sediments below water depths greater than about 500 m where the supply of methane is sufficient to stabilize the gas hydrate. Observations on DSDP Leg 11 suggested the presence of gas hydrates in sediments of the Blake Outer Ridge. Leg 76 coring and sampling confirms that, indeed, gas hydrates are present there. Geochemical evidence for gas hydrates in sediment of the Blake Outer Ridge includes (1) high concentrations of methane, (2) a sediment sample with thin, matlike layers of white crystals that released a volume of gas twenty times greater than its volume of pore fluid, (3) a molecular distribution of hydrocarbon gases that excluded hydrocarbons larger than isobutane, (4) results from pressure core barrel experiments, and (5) pore-fluid chemistry. The molecular composition of the hydrocarbons in these gas hydrates and the isotopic composition of the methane indicate that the gas is derived mainly from microbiological processes operating on the organic matter within the sediment. Although gas hydrates apparently are widespread on the Blake Outer Ridge, they probably are not of great economic significance as a potential, unconventional, energy resource or as an impermeable cap for trapping upwardly migrating gas at Site 533.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
Coral reefs are increasingly threatened by global and local anthropogenic stressors, such as rising seawater temperature and nutrient enrichment. These two stressors vary widely across the reef face and parsing out their influence on coral communities at reef system scales has been particularly challenging. Here, we investigate the influence of temperature and nutrients on coral community traits and life history strategies on lagoonal reefs across the Belize Mesoamerican Barrier Reef System (MBRS). A novel metric was developed using ultra-high-resolution sea surface temperatures (SST) to classify reefs as enduring low (lowTP), moderate (modTP), or extreme (extTP) temperature parameters over 10 years (2003 to 2012). Chlorophyll-a (chl a) records obtained for the same interval were employed as a proxy for bulk nutrients and these records were complemented with in situ measurements to "sea truth" nutrient content across the three reef types. Chl a concentrations were highest at extTP sites, medial at modTP sites and lowest at lowTP sites. Coral species richness, abundance, diversity, density, and percent cover were lower at extTP sites compared to lowTP and modTP sites, but these reef community traits did not differ between lowTP and modTP sites. Coral life history strategy analyses showed that extTP sites were dominated by hardy stress-tolerant and fast-growing weedy coral species, while lowTP and modTP sites consisted of competitive, generalist, weedy, and stress-tolerant coral species. These results suggest that differences in coral community traits and life history strategies between extTP and lowTP/modTP sites were driven primarily by temperature differences with differences in nutrients across site types playing a lesser role. Dominance of weedy and stress-tolerant genera at extTP sites suggests that corals utilizing these two life history strategies may be better suited to cope with warmer oceans and thus may warrant further protective status during this climate change interval.
Data associated with this project are archived here, including:
-SST data
-Satellite Chl a data
-Nutrient measurements
-Raw coral community survey data
For questions contact Justin Baumann (j.baumann3