121 resultados para Combined lower upper bound estimation (LUBE)

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Laurentide Ice Sheet (LIS) was a large, dynamic ice sheet in the early Holocene. The glacial events through Hudson Strait leading to its eventual demise are recorded in the well-dated Labrador shelf core, MD99-2236 from the Cartwright Saddle. We develop a detailed history of the timing of ice-sheet discharge events from the Hudson Strait outlet of the LIS during the Holocene using high-resolution detrital carbonate, ice rafted detritus (IRD), d18O, and sediment color data. Eight detrital carbonate peaks (DCPs) associated with IRD peaks and light oxygen isotope events punctuate the MD99-2236 record between 11.5 and 8.0 ka. We use the stratigraphy of the DCPs developed from MD99-2236 to select the appropriate DeltaR to calibrate the ages of recorded glacial events in Hudson Bay and Hudson Strait such that they match the DCPs in MD99-2236. We associate the eight DCPs with H0, Gold Cove advance, Noble Inlet advance, initial retreat of the Hudson Strait ice stream (HSIS) from Hudson Strait, opening of the Tyrrell Sea, and drainage of glacial lakes Agassiz and Ojibway. The opening of Foxe Channel and retreat of glacial ice from Foxe Basin are represented by a shoulder in the carbonate data. DeltaR of 350 years applied to the radiocarbon ages constraining glacial events H0 through the opening of the Tyrell Sea provided the best match with the MD99-2236 DCPs; DeltaR values and ages from the literature are used for the younger events. A very close age match was achieved between the 8.2 ka cold event in the Greenland ice cores, DCP7 (8.15 ka BP), and the drainage of glacial lakes Agassiz and Ojibway. Our stratigraphic comparison between the DCPs in MD99-2236 and the calibrated ages of Hudson Strait/Bay deglacial events shows that the retreat of the HSIS, the opening of the Tyrell Sea, and the catastrophic drainage of glacial lakes Agassiz and Ojibway at 8.2 ka are separate events that have been combined in previous estimates of the timing of the 8.2 ka event from marine records. SW Iceland shelf core MD99-2256 documents freshwater entrainment into the subpolar gyre from the Hudson Strait outlet via the Labrador, North Atlantic, and Irminger currents. The timing of freshwater release from the LIS Hudson Strait outlet in MD99-2236 matches evidence for freshwater forcing and LIS icebergs carrying foreign minerals to the SW Iceland shelf between 11.5 and 8.2 ka. The congruency of these records supports the conclusion of the entrainment of freshwater from the retreat of the LIS through Hudson Strait into the subpolar gyre and provides specific time periods when pulses of LIS freshwater were present to influence climate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The distribution and composition of minerals in the silt and clay fraction of the fine-grained slope sediments were examined. Special interest was focused on diagenesis. The results are listed as follows. (1) Smectite, andesitic Plagioclase, quartz, and low-Mg calcite are the main mineral components of the sediment. Authigenic dolomite was observed in the weathering zones of serpentinites, together with aragonite, as well as in clayey silt. (2) The mineralogy and geochemistry of the sediments is analogous to that of the andesitic rocks of Costa Rica and Guatemala. (3) Unstable components like volcanic glass, amphiboles, and pyroxenes show increasing etching with depth. (4) The diagenetic alteration of opal-A skeletons from etching pits and replacement by opal-CT to replacement by chalcedony as a final stage corresponds to the typical opal diagenesis. (5) Clinoptilolite is the stable zeolite mineral according to mineral stability fields; its neoformation is well documented. (6) The early diagenesis of smectites is shown by an increase of crystallinity with depth. Only the smectites in the oldest sediments (Oligocene and early Eocene) contain nonexpanding illite layers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Manganese contents in reduced sediments and accumulation rates were investigated. Their values in sediments of most of cores are background (0.03-0.07 %).Anomalous concentrations (up to 2.5 %) and accumulation rates (up to 60 mg/cm**2/ka) occur near the known region of hydrothermal barite mineralization in the Derugin Basin. High accumulation rates of Mn (>10 mg/cm**2/ka) also occur in Holocene sediments to south-east from the Derugin Basin. It can be assumed that high Mn contents and accumulation rates occur there due to transportation of Mn-rich water from the Derugin Basin in the near-bottom layer under the lower border of the Sea of Okhotsk Intermediate Water. Intensive Mn accumulation is also typical for the South Okhotsk Basin near the Bussol Strait. Mn accumulation rates of glacial sediments of the second oxygen isotope stage are less significant, which is presumed to be caused by paleoceanological reasons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A zonation is presented for the oceanic late Middle Jurassic to Late Jurassic of the Atlantic Ocean. The oldest zone, the Stephenolithion bigotii Zone (subdivided into a Stephanolithion hexum Subzone and a Cyclagelosphaera margerelii Subzone), is middle Callovian to early Oxfordian. The Vagalapilla stradneri Zone is middle Oxfordian to Kimmeridgian. The Conusphaera mexicana Zone, subdivided into a lower Hexapodorhabdus cuvillieri Subzone and a Polycostella beckmannii Subzone, is the latest Kimmeridgian to Tithonian. Direct correlation of this zonation with the boreal zonation established for Britain and northern France (Barnard and Hay, 1974; Medd, 1982; Hamilton, 1982) is difficult because of poor preservation resulting in low diversity for the cored section at Site 534 and a lack of Tithonian marker species in the boreal realm. Correlations based on dinoflagellates and on nannofossils with stratotype sections (or regions) give somewhat different results. Dinoflagellates give generally younger ages, especially for the Oxfordian to Kimmeridgian part of the recovered section, than do nannofossils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The climate during the Cenozoic era changed in several steps from ice-free poles and warm conditions to ice-covered poles and cold conditions. Since the 1950s, a body of information on ice volume and temperature changes has been built up predominantly on the basis of measurements of the oxygen isotopic composition of shells of benthic foraminifera collected from marine sediment cores. The statistical methodology of time series analysis has also evolved, allowing more information to be extracted from these records. Here we provide a comprehensive view of Cenozoic climate evolution by means of a coherent and systematic application of time series analytical tools to each record from a compilation spanning the interval from 4 to 61 Myr ago. We quantitatively describe several prominent features of the oxygen isotope record, taking into account the various sources of uncertainty (including measurement, proxy noise, and dating errors). The estimated transition times and amplitudes allow us to assess causal climatological-tectonic influences on the following known features of the Cenozoic oxygen isotopic record: Paleocene-Eocene Thermal Maximum, Eocene-Oligocene Transition, Oligocene-Miocene Boundary, and the Middle Miocene Climate Optimum. We further describe and causally interpret the following features: Paleocene-Eocene warming trend, the two-step, long-term Eocene cooling, and the changes within the most recent interval (Miocene-Pliocene). We review the scope and methods of constructing Cenozoic stacks of benthic oxygen isotope records and present two new latitudinal stacks, which capture besides global ice volume also bottom water temperatures at low (less than 30°) and high latitudes. This review concludes with an identification of future directions for data collection, statistical method development, and climate modeling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxygen and carbon isotope records are presented for the benthic foraminifer Cibicidoides wuellerstorfi from upper middle through lower upper Miocene (11.6-8.2 Ma) sediments recovered at intermediate water depth (1134 m) at Ocean Drilling Program Site 982 on Rockall Plateau. Oxygen isotopic values generally lighter than those for the Holocene indicate significantly warmer intermediate waters and/or less global ice volume during the late middle to early late Miocene than at the present. The most depleted oxygen isotope values occurred at around 10.5 Ma. After this time a long-term increase in d18O suggests a gradual increase in global ice volume and/or cooling of intermediate waters during the late Miocene. Comparison of the intermediate depth benthic foraminiferal carbon isotope record from Site 982 and records from various North Atlantic deep sites shows that intermediate waters were generally better ventilated than deep waters between 11.6 and 9.6 Ma. During this time period, increased ventilation of intermediate waters was linked to cooling or the build up of polar ice caps. The Mi events originally proposed by Miller et al. (1991, doi:10.1029/90JB02015) and Wright and Miller (1992, doi:10.2973/odp.proc.sr.120.193.1992) are difficult to identify with certainty in sediments sampled at high resolution (<10**4 year). Comparison of the high-resolution benthic d18O records from ODP Site 982 with the low-resolution benthic d18O record from Monte Gibliscemi (Mediterranean) show that Mi events, if real, may not be of importance as a stratigraphic tool in upper Miocene sedimentary sequences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diatoms are present in middle to lower upper Miocene sections of all holes examined during Leg 150, but are generally absent or in low abundance in Pleistocene to middle upper Miocene sediments. An exception is the alternating diatom-rich, diatom-poor intervals in upper Quaternary sediments. Five new diatom zones, covering an interval from near the lower/middle Miocene boundary to the lower upper Miocene, are proposed. Some of the taxon used to define these zones are also used in zonal schemes for the East Coast of the United States, and allow for correlations to be drawn between this region and Leg 150 sites. Lower Miocene and older levels are not included in this study. Although older Tertiary diatoms are present at some of the sites, dissolution has largely compromised their usefulness as zonal markers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over most of the Gulf of Mexico and Caribbean a hiatus is present between the lower upper Maastrichtian and lowermost Tertiary deposits; sedimentation resumed ~200 ka (upper zone Pla) after the K-T boundary. Current-bedded volcaniclastic sedimentary rocks at Deep Sea Drilling Project (DSDP) Sites 536 and 540, which were previously interpreted as impact-generated megawave deposits of K-T boundary age, are biostratigraphically of pre-K-T boundary age and probably represent turbidite or gravity-How deposits. The top 10 to 20 cm of this deposit at Site 536 contains very rare Micula prinsii, the uppermost Maastrichtian index taxon, as well as low values of Ir (0.6 pbb) and rare Ni-rich spinels. These indicate possible reworking of sediments of K-T boundary age at the hiatus. Absence of continuous sediment accumulation across the K-T boundary in the 16 Gulf of Mexico and Caribbean sections examined prevents their providing evidence of impact-generated megawave deposits in this region. Our study indicates that the most complete trans-K-T stratigraphic records may be found in onshore marine sections of Mexico, Cuba, and Haiti. The stratigraphic records of these areas should be investigated further for evidence of impact deposits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A quantative study was made of silicoflagellates recovered from Sites 642 (lower Miocene-upper Pliocene), 643 (lower Miocene-upper Miocene), and 644 (upper Pliocene-Quaternary) on the Voring Plateau. Although disconformities are present in these sequences, they represent a much more complete record of the Neogene than was recovered previously in the Norwegian Sea by DSDP Leg 38. Silicoflagellates are rare or absent for glacial sequences younger than 2.65 Ma, and generally sparse and poorly preserved in the lower upper Pliocene and upper Miocene. Lower and middle Miocene assemblages are diverse and generally well preserved. Temporal changes in the silicoflagellate assemblage are indicative of major paleoceanographic changes in the Norwegian Sea. A regional zonation for the Neogene of the Norwegian Sea is proposed, consisting of eleven zones: Naviculopsis lata Zone, N. quadrata Zone (emended), N. ponticula Zone (emended), Distephanus speculum hemisphaericus Zone (new), Caryocha ernestinae Zone (new), Bachmannocena circulus var. apiculata/Caryocha Zone (new), Distephanus crux scutulatus Zone (new), Bachmannocena diodon nodosa Zone (new), Distephanus boliviensis Zone (new), Ds. jimlingii Zone (elevated from subzonal to zonal status) with Subzones a and b (new), and Ds. speculum Zone (new). The ranges and abundances of over 100 species and morphotypes are tabulated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During Ocean Drilling Program Leg 190 several turbidite successions in the Nankai Trough were drilled through including Pleistocene trench fill (Sites 1173 and 1174), Pleistocene-Pliocene slope basin deposits and underlying trench fill (Sites 1175 and 1176), Miocene Shikoku Basin deposits (Site 1177), and upper Miocene trench fill (Site 1178). Sands from the Pleistocene trench-fill succession of the Nankai Trough are of mixed derivation with significant monomineralic components (quartz and feldspar) and mafic to intermediate volcanic rock fragments, in addition to sedimentary and less abundant metamorphic detritus. They have a source in the Izu collision zone in central Honshu. Sands from the slope and accreted trench fill at Sites 1175 and 1176 are dominated by quartz with less abundant feldspar, sedimentary rock fragments, and only minor volcanic and metamorphic rock fragments. In contrast to the trench turbidites of Sites 1173 and 1174, these sands are very quartzose with characteristic radiolarian chert fragments. Volcanic rock fragments are mainly of silicic composition. Potential sources of these sands are uplifted subduction complexes of southwest Japan. Sands from the accreted trench turbidites at Site 1178 have clast types similar to those at Sites 1175 and 1176. In contrast, however, framework detrital modes are distinctive, with Site 1178 sands having substantially lower total quartz contents and more abundant fine-grained sedimentary rock fragments. These sands were also probably derived from the island of Shikoku, but their composition indicates that sedimentary rocks were abundant in the source area and these may have been Miocene forearc basin successions that were largely removed by erosion. Erosional remnants of Miocene forearc basin deposits are present on the Kii Peninsula east-northeast of Shikoku. Erosion followed a phase of exhumation of the Shimanto Belt indicated by apatite fission track ages at ~10 Ma. Sand in the lower-upper Miocene turbidites of the lower Shikoku Basin section at Site 1177 is more varied in composition, with the upper part of the unit similar to Site 1178 (i.e., rich in sedimentary rock fragments) and the lower part similar to those at Sites 1175 and 1176 (i.e., rich in quartz with some silicic volcanic rock fragments). Sands from the lower part of the Miocene turbidite unit were derived from a continental source with plutonic and volcanic rocks, possibly the inner zone of southwest Japan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lithobiostratigraphic data indicate that the double reflectors on the seismic profile through Ocean Drilling Program (ODP) Site 1148 represent two unconformities that coincide, respectively, with the lower/upper Oligocene boundary at ~488 mcd, and Oligocene-Miocene boundary at 460 mcd. Two other unconformities, at ~478 and 472 mcd, respectively, were also identified within the upper Oligocene section. Together they erased a sediment record of about 3 Ma from this locality in a period of very active seafloor spreading. The existence of 32.8 Ma marine sediment at the terminated depth (850 mcd) indicates that the initial breakup of the South China Sea (SCS) was probably during 34-33 Ma, close to the Eocene-Oligocene boundary. High sedimentation rates of 60-115 m/my from the much expanded, N350 m lower Oligocene section resulted from rifting and rapid subsidence between 33 and 29 Ma. The mid-Oligocene unconformity at ~28.5 Ma, which also occurred in many parts of the Indo-West Pacific region, was probably related to a significant uplift of the Himalayan-Tibetan Plateau to the west and the initial collision between Indonesia and Australia in the south. A narrowed Indonesian seaway may have accounted for the late Oligocene warming and chalk deposition in the northern South China Sea including the Site 1148 locality. The unconformities and slumps near the Oligocene-Miocene boundary indicate a very unstable tectonic regime, probably corresponding to changes in the rotation of different land blocks and the seafloor spreading ridge from nearly E-W to NE-SW, as recognized earlier at magnetic Anomaly 7. This 25 Ma event also saw the first New Guinea terrane docking at the northern Australian craton. The low sedimentation rate of ~15 m/my in the early to middle Miocene may correspond to another period of rapid seafloor spreading and rapid widespread subsidence that effectively caused sediment source areas to retreat with a rapidly rising sea level. The isostatic nature of these late Oligocene unconformities and slumps with several major collision-uplift events indicate that the rapid changes in the early evolutionary history of the South China Sea were mainly responding to regional tectonic reconfiguration including the uplift-driven southeast extrusion of the Indochina subcontinent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sites 1085, 1086 and 1087 were drilled off South Africa during Ocean Drilling Program (ODP) Leg 175 to investigate the Benguela Current System. While previous studies have focused on reconstructing the Neogene palaeoceanographic and palaeoclimatic history of these sites, palynology has been largely ignored, except for the Late Pliocene and Quaternary. This study presents palynological data from the upper Middle Miocene to lower Upper Pliocene sediments in Holes 1085A, 1086A and 1087C that provide complementary information about the history of the area. Abundant and diverse marine palynomorphs (mainly dinoflagellate cysts), rare spores and pollen, and dispersed organic matter have been recovered. Multivariate statistical analysis of dispersed organic matter identified three palynofacies assemblages (A, B, C) in the most continuous hole (1085A), and they were defined primarily by amorphous organic matter (AOM), and to a lesser extent black debris, structured phytoclasts, degraded phytoclasts, and marine palynomorphs. Ecostratigraphic interpretation based on dinoflagellate cyst, spore-pollen and palynofacies data allowed us to identify several palaeoceanographic and palaeoclimatic signals. First, the late Middle Miocene was subtropical, and sediments contained the highest percentages of land-derived organic matter, even though they are rich in AOM (palynofacies assemblage A). Second, the Late Miocene was cool-temperate and characterized by periods of intensified upwelling, increase in productivity, abundant and diverse oceanic dinoflagellate cysts, and the highest percentages of AOM (palynofacies assemblage C). Third, the Early to early Late Pliocene was warm-temperate with some dry intervals (increase in grass pollen) and intensified upwelling. Fourth, the Neogene "carbonate crash" identified in other southern oceans was recognized in two palynofacies A samples in Hole 1085A that are nearly barren of dinoflagellate cysts: one Middle Miocene sample (590 mbsf, 13.62 Ma) and one Upper Miocene sample (355 mbsf, 6.5 Ma). Finally, the extremely low percentages of pollen suggest sparse vegetation on the adjacent landmass, and Namib desert conditions were already in existence during the late Middle Miocene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have integrated Oligocene to lower upper Miocene planktonic foraminifer biostratigraphy with benthic foraminifer (Cibicidoides spp.) stable isotope records for two sites drilled on opposite sides of the Sierra Leone Rise in the eastern equatorial Atlantic Ocean. Deep Sea Drilling Project Site 366 (2853 m present water depth; 2200-2800 m paleodepth) recovered an Oligocene to upper Miocene record with a minor unconformity in the "middle" Oligocene and a condensed middle Miocene section. Ocean Drilling Program Site 667 (3529 m present depth; 3000-3500 m paleodepth) recovered an apparently continuous "middle" Oligocene to lower middle Miocene record and a similar condensed middle Miocene section. The Oligocene to lower Miocene sections were deposited at similar sedimentation rates (~11-16 m/m.y.). Stable isotope stratigraphy proved to be useful in establishing intra- and interbasinal correlations. In addition to the well-known earliest Oligocene and middle Miocene S180 increases, a distinct d18O increase occurred near the Oligocene/Miocene boundary. Carbon isotope variations provide similar potential for improving correlations; for example, a d13C increase occurred near the Oligocene/Miocene boundary in concert with increased d18O values. There was little d13C difference between the western Atlantic and eastern Atlantic basins during the late Oligocene and most of the middle Miocene; in contrast, eastern basin d13C values were slightly lower than those in the western basins during the earliest Oligocene (about 35-33 Ma) and early Miocene (about 22-18 Ma).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An almost continuous Upper Cretaceous through Pleistocene biogenic sediment section was recovered from two sites on Maud Rise, a volcanic edifice in the Weddell Sea, off eastern Antarctica. Calcium carbonate values were determined for 1100 closely spaced samples using a Coulometrics CO2 Coulometer. Following a very brief decrease in the percentage of calcium carbonate immediately above the Cretaceous/Tertiary boundary, values remain high (~70%-80%), throughout most of the Paleocene, with variations primarily attributed to changes in the relative abundance of terrigenous and biogenic components. A small general decrease in calcium carbonate is observed from the upper Paleocene to lower middle Eocene. Eocene values continue to show small to moderate fluctuations. These fluctuations become more pronounced in the Oligocene as biosiliceous and carbonate sediments are mixed and interlayered. A distinct decrease in the calcium carbonate component is observed in the upper Oligocene through lower middle Miocene. Calcium carbonate becomes dominant again in the middle and lower upper Miocene, followed by almost exclusive biosiliceous sedimentation until the Pleistocene, where foraminifer-dominated calcareous ooze was recovered. Interpretation of this data will be carried out when a more finalized chronostratigraphy for the sequence has been produced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use benthic foraminifers to reconstruct the Neogene paleobathymetric history of the Marion Plateau, Queensland Plateau, Townsville Trough, and Queensland Trough on the northeastern Australian margin (Ocean Drilling Program Leg 133). Western Queensland Plateau Site 811/825 (present depth, ~938 m) deepened from the neritic zone (0-200 m) to the upper bathyal zone (200-600 m) during the middle Miocene (~13-14 Ma), with further deepening into the middle bathyal zone (600-1000 m) occurring during the late Miocene (~7 Ma). A depth transect across the southern Queensland Plateau shows that deepening from the outer neritic zone (100-200 m) to the upper bathyal zone began during the latest Miocene (~6 Ma) at the deepest location (Site 813, present depth, 539.1 m), whereas the shallower Sites 812 and 814 (present depths, 461.6 and 520.4 m, respectively) deepened during the late Pliocene (~2.7 and ~2.9 Ma). At Marion Plateau Site 815 (present depth, 465.5 m), water depth increased during the late Miocene (~6.7 Ma) from the outer neritic to the upper bathyal zone. Nearby Site 816 (present water depth, 437.3 m) contains Pliocene upper bathyal assemblages that directly overlie middle Miocene shallow neritic deposits; the timing of the deepening is uncertain because of a late Miocene hiatus. On the northern slope of the Townsville Trough (Site 817, present depth, 1015.8 m), benthic foraminifers and sponge spicules indicate deepening from the lower upper bathyal (400-600 m) to the middle bathyal zone in the late Miocene (by ~6.8 Ma). Benthic foraminiferal faunas at nearby Site 818 (present water depth, 752.1 m) do not show evidence of paleobathymetric change; however, a late Pliocene (~2-3 Ma) increase in downslope transport may have been related to the drowning of the Queensland Plateau. Site 822 (present depth, 955.2 m), at the base of the Great Barrier Reef slope, deepened from the upper bathyal to the middle bathyal zone during the late Pliocene (by ~2.3 Ma). Queensland Trough Site 823 (present depth, 1638.4 m) deepened from the middle bathyal to the lower bathyal (1000-2000 m) zone during the late Miocene (~6.5 Ma). Benthic foraminiferal faunal changes at these Leg 133 sites indicate that rapid deepening occurred during the middle Miocene (~13-14 Ma), late Miocene (6-7 Ma), and late Pliocene (2-3 Ma) along the northeastern Australian margin.