27 resultados para Combined loading of axial compression and torsion

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physiological responses (ingestion rate, absorption rate and efficiency, respiration, rate, excretion rate) and scope for growth of a subtidal scavenging gastropod Nassarius conoidalis under the combined effects of ocean acidification (pCO2 levels: 380, 950, 1250 µatm) and temperature (15, 30 °C) were investigated for 31 days. There was a significant reduction in all the physiological rates and scope for growth following short-term exposure (1-3 days) to elevated pCO2 except absorption efficiency at 15 °C and 30 °C, and respiration rate and excretion rate at 15 °C. The percentage change in the physiological rates ranged from 0% to 90% at 15 °C and from 0% to 73% at 30 °C when pCO2 was increased from 380 µatm to 1250 µatm. The effect of pCO2 on the physiological rates was enhanced at high temperature for ingestion, absorption, respiration and excretion. When the exposure period was extended to 31 days, the effect of pCO2 was significant on the ingestion rate only. All the physiological rates remained unchanged when temperature increased from 24 °C to 30 °C but the rates at 15 °C were significantly lower, irrespective of the duration of exposure. Our data suggested that a medium-term exposure to ocean acidification has no effect on the energetics of N. conoidalis. Nevertheless, the situation may be complicated by a longer term of exposure and/or a reduction in salinity in a warming world.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean acidification (OA) is anticipated to interact with the more frequently occurring hypoxic conditions in shallow coastal environments. These could exert extreme stress on the barnacle-dominated fouling communities. However, the interactive effect of these two emerging stressors on early-life stages of fouling organisms remains poorly studied. We investigated both the independent and interactive effect of low pH (7.6 vs. ambient 8.2) and low oxygen (LO; 3 mg/l vs. ambient 5 mg/l) from larval development through settlement (attachment and metamorphosis) and juvenile growth of the widespread fouling barnacle, Balanus amphitrite. In particular, we focused on the critical transition between planktonic and benthic phases to examine potential limiting factors (i.e. larval energy storage and the ability to perceive cues) that may restrain barnacle recruitment under the interactive stressors. LO significantly slowed naupliar development, while the interaction with low pH (LO-LP) seemed to alleviate the negative effect. However, 20-50% of the larvae became cyprid within 4 d post-hatching, regardless of treatment. Under the two stressors interaction (LO-LP), the barnacle larvae increased their feeding rate, which may explain why their energy reserves at competency were not different from any other treatment. In the absence of a settlement-inducing cue, a significantly lower percentage of cyprids (15% lower) settled in LO and LO-LP. The presence of an inducing cue, however, elevated attachment up to 50-70% equally across all treatments. Post-metamorphic growth was not altered, although the condition index was different between LO and LO-LP treatments, potentially indicating that less and/or weaker calcified structures were developed when the two stressors were experienced simultaneously. LO was the major driver for the responses observed and its interaction with low pH should be considered in future studies to avoid underestimating the sensitivity of biofouling species to OA and associated climate change stressors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean acidification (OA) and anthropogenic noise are both known to cause stress and induce physiological and behavioural changes in fish, with consequences for fitness. OA is also predicted to reduce the ocean's capacity to absorb low-frequency sounds produced by human activity. Consequently, anthropogenic noise could propagate further under an increasingly acidic ocean. For the first time, this study investigated the independent and combined impacts of elevated carbon dioxide (CO2) and anthropogenic noise on the behaviour of a marine fish, the European sea bass (Dicentrarchus labrax). In a fully factorial experiment crossing two CO2 levels (current day and elevated) with two noise conditions (ambient and pile driving), D. labrax were exposed to four CO2/noise treatment combinations: 400 µatm/ambient, 1000 µatm/ambient, 400 µatm/pile-driving, and 1000 µatm/pile driving. Pile-driving noise increased ventilation rate (indicating stress) compared with ambient noise conditions. Elevated CO2 did not alter the ventilation rate response to noise. Furthermore, there was no interaction effect between elevated CO2 and pile-driving noise, suggesting that OA is unlikely to influence startle or ventilatory responses of fish to anthropogenic noise. However, effective management of anthropogenic noise could reduce fish stress, which may improve resilience to future stressors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Along with increasing oceanic CO2 concentrations, enhanced stratification constrains phytoplankton to shallower upper mixed layers with altered light regimes and nutrient concentrations. Here, we investigate the effects of elevated pCO2 in combination with light or nitrogen-limitation on 13C fractionation (epsilon p) in four dinoflagellate species. We cultured Gonyaulax spinifera and Protoceratium reticulatum in dilute batches under low-light (LL) and high-light (HL) conditions, and grew Alexandrium fundyense and Scrippsiella trochoidea in nitrogen-limited continuous cultures (LN) and nitrogen-replete batches (HN). The observed CO2-dependency of epsilon p remained unaffected by the availability of light for both G. spinifera and P. reticulatum, though at HL epsilon p was consistently lower by about 2.7 per mil over the tested CO2 range for P. reticulatum. This may reflect increased uptake of (13C-enriched) bicarbonate fueled by increased ATP production under HL conditions. The observed CO2-dependency of epsilon p disappeared under LN conditions in both A. fundyense and S. trochoidea. The generally higher epsilon p under LN may be associated with lower organic carbon production rates and/or higher ATP:NADPH ratios. CO2-dependent epsilon p under non-limiting conditions has been observed in several dinoflagellate species, showing potential for a new CO2-proxy. Our results however demonstrate that light- and nitrogen-limitation also affect epsilon p, thereby illustrating the need to carefully consider prevailing environmental conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Warming of the world's oceans is predicted to have many negative effects on organisms as they have optimal thermal windows. In coastal waters, however, both temperatures and pCO2 (pH) exhibit diel variations, and biological performances are likely to be modulated by physical and chemical environmental changes. To understand how coastal zooplankton respond to the combined impacts of heat shock and increased pCO2, the benthic copepod Tigriopus japonicus were treated at temperatures of 24, 28, 32 and 36 °C to simulate natural coastal temperatures experienced in warming events, when acclimated in the short term to either ambient (LC, 390 µatm) or future CO2 (HC, 1000 µatm). HC and heat shock did not induce any mortality of T. japonicus, though respiration increased up to 32 °C before being depressed at 36 °C. Feeding rate peaked at 28 °C but did not differ between CO2 treatments. Expression of heat shock proteins (hsps mRNA) was positively related to temperature, with no significant differences between the CO2 concentrations. Nauplii production was not affected across all treatments. Our results demonstrate that T. japonicus responds more sensitively to heat shocks rather than to seawater acidification; however, ocean acidification may synergistically act with ocean warming to mediate the energy allocation of copepods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the combined effects of reduced pH and increased temperature on the capacities of the Pacific cupped oyster Crassostrea gigas to bioconcentrate radionuclide and metals. Oysters were exposed to dissolved radiotracers (110mAg, 241Am, 109Cd,57Co,54Mn, and 65Zn) at three pH (7.5, 7.8, 8.1) and two temperatures (21 and 24°C) under controlled laboratory conditions. Although calcifying organisms are recognized as particularly vulnerable to ocean acidification, the oyster did not accumulate differently the studied metals when exposed under the different pH conditions. However, temperature alone or in combination with pH somewhat altered the bioaccumulation of the studied elements. At pH 7.5, Cd was accumulated with an uptake rate constant twofold higher at 24°C than 21°C. Bioaccumulation of Mn was significantly affected by an interactive effect between seawater pH and temperature, with a decreased uptake rate at pH 7.5 when temperature increased (27 ± 1 vs. 17 ± 1 /day at 21 and 24°C, respectively). Retention of Co and Mn tended also to decrease at the same pH with decreasing temperature. Neither pH nor temperature affected strongly the elements distribution between shell and soft tissues. Significant effects of pH were found on the bioaccessibility of Mn, Zn, and 241Am during experimental in vitro simulation of human digestion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the coupled use of multibeam swath bathymetry, high-resolution subbottom profiling and sediment coring from icebreakers in the Arctic Ocean, there is a growing awareness of the prevalence of Quaternary ice-grounding events on many of the topographic highs found in present water depths of <1000 m. In some regions, such as the Lomonosov Ridge and Yermak Plateau, overconsolidated sediments sampled through either drilling or coring are found beneath seismically imaged unconformities of glacigenic origin. However, there exists no comprehensive analysis of the geotechnical properties of these sediments, or how their inferred stress state may be related to different glacigenic processes or types of ice-loading. Here we combine geophysical, stratigraphic and geotechnical measurements from the Lomonosov Ridge and Yermak Plateau and discuss the glacial geological implications of overconsolidated sediments. The degree of overconsolidation, determined from measurements of porosity and shear strength, is shown to result from consolidation and/or deformation below grounded ice and, with the exception of a single region on the Lomonosov Ridge, cannot be explained by erosion of overlying sediments. We demonstrate that the amount and depth of porosity loss associated with a middle Quaternary (~ 790-950 thousand years ago - ka) grounding on the Yermak Plateau is compatible with sediment consolidation under an ice sheet or ice rise. Conversely, geotechnical properties of sediments from beneath late Quaternary ice-groundings in both regions, independently dated to Marine Isotope Stage (MIS) 6, indicate a more transient event commensurate with a passing tabular iceberg calved from an ice shelf.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the different scientific objectives of Legs 185 and 191, the sedimentary sections recovered from Sites 1149 and 1179 are the two most complete sections recovered from the northwestern Pacific Basin by either the Deep Sea Drilling Project (DSDP) (i.e., Legs 6, 20, 32, and 86) or ODP (i.e., Legs 185 and 191). During Leg 185, a complete sedimentary section (410 m) and an additional 133 m of highly altered volcanic basement were recovered. The Miocene to Pleistocene section (i.e., upper ~150 m) recovered from Site 1149 includes lithostratigraphic Unit I (0-118.2 meters below sea floor [mbsf]) and Subunit IIA (118.2-149.5 mbsf) of Plank, Ludden, Escutia, et al. (2000, doi:10.2973/odp.proc.ir.185.2000) and consists of ash- and biogenic silica- bearing clay, radiolarian-bearing clay, silt-bearing clay, ash-bearing siliceous ooze, and diatomaceous clay, with numerous discrete volcanic ash layers (Plank, Ludden, Escutia, et al., 2000, doi:10.2973/odp.proc.ir.185.2000). During Leg 191, a near-continuous 375-m-thick sedimentary section was recovered in addition to 100 m of basaltic basement. The upper 221.5 m of the sedimentary section at Site 1179 (i.e., within lithostratigraphic Unit I of Kanazawa, Sager, Escutia et al. [2001, doi:10.2973/odp.proc.ir.191.2001]) consists of upper Miocene to Pleistocene clay- and radiolarian-bearing diatom ooze containing numerous discrete ash layers. The presence of discrete ash layers within the Miocene to Pleistocene sedimentary section at both Site 1149 and 1179 provides a unique opportunity to conduct 40Ar/39Ar ash chronology to refine the excellent magnetostratigraphic records (based on the scale of Berggren et al., 1995) obtained shipboard from both sites (Plank, Ludden, Escutia, et al., 2000, doi:10.2973/odp.proc.ir.185.2000; Kanazawa, Sager, Escutia, et al., 2001, doi:10.2973/odp.proc.ir.191.2001).In this data report we present the analytical results from the 40Ar/39Ar incrementally heated analyses and provide a new combined late Miocene to Pleistocene 40Ar/39Ar and magnetostratigraphic chronology for the northwestern Pacific.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To predict effects of climate change and possible feedbacks, it is crucial to understand the mechanisms behind CO2 responses of biogeochemically relevant phytoplankton species. Previous experiments on the abundant N2 fixers Trichodesmium demonstrated strong CO2 responses, which were attributed to an energy reallocation between its carbon (C) and nitrogen (N) acquisition. Pursuing this hypothesis, we manipulated the cellular energy budget by growing Trichodesmium erythraeum IMS101 under different CO2 partial pressure (pCO2) levels (180, 380, 980 and 1400?µatm) and N sources (N2 and NO3-). Subsequently, biomass production and the main energy-generating processes (photosynthesis and respiration) and energy-consuming processes (N2 fixation and C acquisition) were measured. While oxygen fluxes and chlorophyll fluorescence indicated that energy generation and its diurnal cycle was neither affected by pCO2 nor N source, cells differed in production rates and composition. Elevated pCO2 increased N2 fixation and organic C and N contents. The degree of stimulation was higher for nitrogenase activity than for cell contents, indicating a pCO2 effect on the transfer efficiency from N2 to biomass. pCO2-dependent changes in the diurnal cycle of N2 fixation correlated well with C affinities, confirming the interactions between N and C acquisition. Regarding effects of the N source, production rates were enhanced in NO3-grown cells, which we attribute to the higher N retention and lower ATP demand compared with N2 fixation. pCO2 effects on C affinity were less pronounced in NO3- users than N2 fixers. Our study illustrates the necessity to understand energy budgets and fluxes under different environmental conditions for explaining indirect effects of rising pCO2.