95 resultados para Collection and preservation

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sites 759 through 764 were drilled during Ocean Drilling Program Leg 122 on the Exmouth and Wombat plateaus off northwest Australia, eastern Indian Ocean. Radiolarian recovery was generally poor due to unsuitable lithofacies. A few Quaternary radiolarian faunas were recovered from most of the sites. Rare and poorly preserved Oligocene and Eocene radiolarian faunas were recovered from Holes 760A, 761B, 761C, and 762B. Poorly preserved Cretaceous radiolarians occur in samples from Holes 761B, 762C, 763B, and 763C. Chert intervals from Cores 122-761B-28X, 122-761C-5R, and 122-761C-6R contain moderately well-preserved Cretaceous radiolarian faunas (upper Albian, mid- to upper Cenomanian, and mid-Albian, respectively). Rare fragments of Upper Triassic radiolarians were recovered from sections in Holes 759B, 760B, and 764A. The only well-preserved pre-Quaternary radiolarians are in lower and upper Paleocene faunas (Bekoma campechensis Zone) recovered from Site 761, Sections 122-761B-16X-1 to 122-761C-19X-CC. The composition of these faunas differs somewhat from that of isolated coeval Paleocene faunas from Deep Sea Drilling Project sites in the Atlantic, Gulf of Mexico, tropical Pacific, eastern Indian Ocean, and near Spain and North Africa, as well as from several on-land sites in North America, Cuba, and the USSR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Downcore changes in various carbonate dissolution indexes are documented for Hole 805C for the last 1.2 m.y. These indexes include degree of fragmentation of planktonic foraminifers, percent sand, abundance ratio of species of contrasting solution susceptibilities (Globigerinoides sacculifer vs. Pulleniatina, Globorotalia tumida, and Globorotalia menardii), and the difference in d18O between species of contrasting solution susceptibilities (G. sacculifer vs. Pulleniatina). These preservation indexes have been combined into a single composite dissolution index that corresponds closely to the d18O record. The rate of change of the oxygen isotope signal is also important, with glacial-to-interglacial transitions corresponding to maximum preservation events and vice versa. For information on changing productivity (which is important because an increased supply of organic matter may enhance dissolution by lowering pH upon degradation), we present the abundance of coarse-fraction benthic foraminifers per gram and the ratio between two planktonic foraminiferal species, one of which is strongly associated with equatorial upwelling (Globorotalia tumida vs. Pulleniatina). Our results suggest that productivity plays a subordinate role in determining foraminifer preservation. Furthermore, our results confirm previous observations that associate enhanced preservation events with glacial periods and with glacial-to-interglacial transitions. A correlation between preservation and sedimentation rates of these carbonate-rich sediments could not be established. Notable differences are present between the responses of individual dissolution indexes, indicating that processes other than dissolution determine proxy indexes to varying degrees.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present late Quaternary records of aragonite preservation determined for sediment cores recovered on the Brazilian Continental Slope (1790-2585 m water depth) where North Atlantic Deep Water (NADW) dominates at present. We have used various indirect dissolution proxies (carbonate content, aragonite/calcite contents, and sand percentages) as well as gastropodal abundances and fragmentation of Limacina inflata to determine the state of aragonite preservation. In addition, microscopic investigations of the dissolution susceptibility of three Limacina species yielded the Limacina Dissolution Index which correlates well with most of the other proxies. Excellent preservation of aragonite was found in the Holocene section, whereas aragonite dissolution gradually increases downcore. This general pattern is attributed to an overall increase in aragonite corrosiveness of pore waters. Overprinted on this early diagenetic trend are high-frequency fluctuations of aragonite preservation, which may be related to climatically induced variations of intermediate water masses.