11 resultados para Cold-formed Steel structures

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abundant serpentinite seamounts are found along the outer high of the Mariana forearc at the top of the inner slope of the trench. One of them, Conical Seamount, was drilled at Sites 778, 779, and 780 during Leg 125. The rocks recovered at Holes 779A and 780C, respectively, on the flanks and at the summit of the seamount, include moderately serpentinized depleted harzburgites and some dunites. These rocks exhibit evidence of resorption of the orthopyroxene, when present, and the local presence of very calcic-rich diopside in veins oblique to the main high-temperature foliation of the rock. The peridotites, initially well-foliated with locally poikiloblastic textures, show overprints of a two-stage deformation history: (1) a high-temperature (>1000°C), low-stress (0.02 GPa), homogeneous deformation that has led to the present Porphyroclastic textures displayed by the rocks and (2) heterogeneous ductile shearing at a much higher stress (0.05 GPa). This heterogeneous shearing probably describes a single tectonic event because it began at high temperatures, producing dynamic recrystallization of olivine in the shear zone, and ended at low temperatures in the stability field of chlorite and serpentine. In a few samples, olivine shows evidence of quasi-hydrostatic recrystallization at a very high temperature. Here, we propose that this recrystallization was related to fluid/magma percolation, a process that can also account for the resorption of the orthopyroxene and for the late crystallization of diopside veins in the rock. The impregnation by fluid or magma, development of the main high-temperature, low-stress deformation, and subsequent migration recrystallization of olivine probably occurred in a mantle fragment involved in the arc formation. In addition, this mantle has preserved structures that may have formed earlier in the oceanic lithosphere upon which the arc formed. Heterogeneous ductile shear zones in the peridotites may have developed during uplift. The "cold" deformation may have taken place during diapiric rise of hot mantle that underwent subsequent serpentinization or gliding along normal faults associated with the extension of the eastern margin of the forearc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In wide areas of Northern Siberia, glaciers have been absent since the Late Pleistocene. Therefore, ground ice and especially ice wedges are used as archives for paleoclimatic studies. In the present study, carried out on the Bykovsky Peninsula, eastern Lena Delta, we were able to distinguish ice wedges of different genetic units by means of oxygen and hydrogen isotopes. The results obtained by this study on the Ice Complex, a peculiar periglacial phenomenon, allowed the reconstruction of the climate history with a subdivision of a period of very cold winters (60-55 ka), followed by a long stable period of cold winter temperatures (50-24 ka), Between 20 ka and 11 ka, climate warming is indicated in stable isotope compositions, most probably after the Late Glacial Maximum. At that time, a change of the marine source of the precipitation from a more humid source to the present North AtIantic source region was assumed. For the Ice Complex, a continuous age-height relationship was established, indicating syngenetic vertical ice wedge growth and sediment accumulation rates of 0.7 m/ky. During the Holocene optimum, ice wedge growth was probably limited due to the extensive formation of lacustrine environments. Holocene ice wedges in thermokarst depressions (alases) and thermoerosional valleys (logs) were formed after climate deterioration from about 4.5 ka until the present. Winter temperatures were warmer at this time as compared to the cooler Pleistocene. Migration of bound water between ice wedges and segregated ice may have altered the isotopic composition of old ice wedges. The presence of ice wedges as diagnostic features for permafrost conditions since 60 ka, implies that a large glacier extending over the Laptev Sea shelf did not exist. For the remote non-glaciated areas of Northern Siberia, ice wedges were established as a powerful climate archive.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Colony counts on high and low-nutrient agar media incubated at 2 and 20 °C, Acridine Orange Direct Counts and biomasses are reported for sediments of the Sierra Leone Abyssal Plain. All isolates from low-nutrient agars also grew in nutrient-rich seawater broth (100 % SWB). However, a greater proportion of the 2 °C than of the 20 °C isolates grew in 2.5% SWB, containing 125 mg/l peptone and 25 mg/l yeast extract. Only 14 strains or 12.7% of the 2 °C isolates, but none of the 20 °C isolates, grew in 0.25 % SWB. Psychrophilic bacteria with maximum growth temperatures below 12 °C, isolated at 2 °C, were predominant among the cultivable bacteria from the surface layer. They required seawater for growth and belonged mainly to the Gram-negative genera Alteromonas and Vibrio. In contrast to the earlier view that psychrophily is connected with the Gram-negative cell type, it was found that cold-adapted bacteria of the Gram-positive genus Bacillus predominated in the 4 to 6 cm layer. The 20 °C isolates, however, were mostly Gram-positive, mesophilic, not dependent on seawater for growth, not able to utilize organic substrates at 4 °C, and belonged mainly to the genus Bacillus and to the Gram-positive cocci. The majority of the mesophilic bacilli most likely evolved from dormant spores, but not from actively metabolizing cells. It can be concluded that only the strains isolated at 2 °C can be regarded as indigenous to the deep-sea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Regab pockmark is a large cold seep area located 10 km north of the Congo deep sea channel at about 3160 m water depth. The associated ecosystem hosts abundant fauna, dominated by chemosynthetic species such as the mussel Bathymodiolus aff. boomerang, vestimentiferan tubeworm Escarpia southwardae, and vesicomyid clams Laubiericoncha chuni and Christineconcha regab. The pockmark was visited during the West African Cold Seeps (WACS) cruise with RV Pourquoi Pas? in February 2011, and a 14,000-m**2 high-resolution videomosaic was constructed to map the most populated area and to describe the distribution of the dominant megafauna (mussels, tubeworms and clams). The results are compared with previous published works, which also included a videomosaic in the same area of the pockmark, based on images of the BIOZAIRE cruise in 2001. The 10-year variation of the faunal distribution is described and reveals that the visible abundance and distribution of the dominant megafaunal populations at Regab have not changed significantly, suggesting that the overall methane and sulfide fluxes that reach the faunal communities have been stable. Nevertheless, small and localized distribution changes in the clam community indicate that it is exposed to more transient fluxes than the other communities. Observations suggest that the main megafaunal aggregations at Regab are distributed around focused zones of high flux of methane-enriched fluids likely related to distinct smaller pockmark structures that compose the larger Regab pockmark. Although most results are consistent with the existing successional models for seep communities, some observations in the distribution of the Regab mussel population do not entirely fit into these models. This is likely due to the high heterogeneity of this site formed by the coalescence of several pockmarks. We hypothesize that the mussel distribution at Regab could also be controlled by the occurrence of zones of both intense methane fluxes and reduced efficiency of the anaerobic oxidation of methane possibly limiting tubeworm colonization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cold-water corals are common along the Moroccan continental margin off Melilla in the Alboran Sea (western Mediterranean Sea), where they colonise and largely cover mound and ridge structures. Radiocarbon ages of the reef-forming coral species Lophelia pertusa and Madrepora oculata sampled from those structures, reveal that they were prolific in this area during the last glacial-interglacial transition with pronounced growth periods covering the Bølling-Allerød interstadial (13.5-12.8 ka BP) and the Early Holocene (11.3-9.8 ka BP). Their proliferation during these periods is expressed in vertical accumulation rates for an individual coral ridge of 266-419 cm ka**-1 that consists of coral fragments embedded in a hemipelagic sediment matrix. Following a period of coral absence, as noted in the records, cold-water corals re-colonised the area during the Mid-Holocene (5.4 ka BP) and underwater photographs indicate that corals currently thrive there. It appears that periods of sustained cold-water coral growth in the Melilla Coral Province were closely linked to phases of high marine productivity. The increased productivity was related to the deglacial formation of the most recent organic rich layer in the western Mediterranean Sea and to the development of modern circulation patterns in the Alboran Sea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The coccolithophore Emiliania huxleyi is a marine phytoplankton species capable of forming small calcium carbonate scales (coccoliths) which cover the organic part of the cell. Calcification rates of E. huxleyi are known to be sensitive to changes in seawater carbonate chemistry. It has, however, not yet been clearly determined how these changes are reflected in size and weight of individual coccoliths and which specific parameter(s) of the carbonate system drive morphological modifications. Here, we compare data on coccolith size, weight, and malformation from a set of five experiments with a large diversity of carbonate chemistry conditions. This diversity allows distinguishing the influence of individual carbonate chemistry parameters such as carbon dioxide (CO2), bicarbonate (HCO3- ), carbonate ion (CO32-), and protons (H+) on the measured parameters. Measurements of fine-scale morphological structures reveal an increase of coccolith malformation with decreasing pH suggesting that H+ is the major factor causing malformations. Coccolith distal shield area varies from about 5 to 11 µm2. Changes in size seem to be mainly induced by varying [HCO3- ] and [H+] although influence of [CO32-] cannot be entirely ruled out. Changes in coccolith weight were proportional to changes in size. Increasing CaCO3 production rates are reflected in an increase in coccolith weight and an increase of the number of coccoliths formed per unit time. The combined investigation of morphological features and coccolith production rates presented in this study may help to interpret data derived from sediment cores, where coccolith morphology is used to reconstruct calcification rates in the water column.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During four expeditions with RV "Polarstern" at the continental margin of the southern Weddell Sea, profiling and geological sampling were carried out. A detailed bathymetric map was constructed from echo-sounding data. Sub-bottom profiles, classified into nine echotypes, have been mapped and interpreted. Sedimentological analyses were carried out on 32 undisturbed box grab surface samples, as well as on sediment cores from 9 sites. Apart from the description of the sediments and the investigation of sedimentary structures on X-radiographs the following characteristics were determined: grain-size distributions; carbonate and Corg content; component distibutions in different grain-size fractions; stable oxygen and carbon isotopes in planktic and, partly, in benthic foraminifers; and physical properties. The stratigraphy is based On 14C-dating, oxygen isotope Stages and, at one site, On paleomagnetic measurements and 230Th-analyses The sediments represent the period of deposition from the last glacial maximum until recent time. They are composed predominantly of terrigenous components. The formation of the sediments was controlled by glaciological, hydrographical and gravitational processes. Variations in the sea-ice coverage influenced biogenic production. The ice sheet and icebergs were important media for sediment transport; their grounding caused compaction and erosion of glacial marine sediments on the outer continental shelf. The circulation and the physical and chemical properties of the water masses controlled the transport of fine-grained material, biogenic production and its preservation. Gravitational transport processes were the inain mode of sediment movements on the continental slope. The continental ice sheet advanced to the shelf edge and grounded On the sea-floor, presumably later than 31,000 y.B.P. This ice movement was linked with erosion of shelf sediments and a very high sediment supply to the upper continental slope from the adiacent southern shelf. The erosional surface On the shelf is documented in the sub-bottom profiles as a regular, acoustically hard reflector. Dense sea-ice coverage above the lower and middle continental slope resulted in the almost total breakdown of biogenic production. Immediately in front of the ice sheet, above the upper continental slope, a <50 km broad coastal polynya existed at least periodically. Biogenic production was much higher in this polynya than elsewhere. Intense sea-ice formation in the polynya probably led to the development of a high salinity and, consequently, dense water mass, which flowed as a stream near bottom across the continental slope into the deep sea, possibly contributing to bottom water formation. The current velocities of this water mass presumably had seasonal variations. The near-bottom flow of the dense water mass, in combination with the gravity transport processes that arose from the high rates of sediment accumulation, probably led to erosion that progressed laterally from east to West along a SW to NE-trending, 200 to 400 m high morphological step at the continental slope. During the period 14,000 to 13,000 y.B.P., during the postglacial temperature and sea-level rise, intense changes in the environmental conditions occured. Primarily, the ice masses on the outer continental shelf started to float. Intense calving processes resulted in a rapid retreat of the ice edge to the south. A consequence of this retreat was, that the source area of the ice-rafted debris changed from the adjacent southern shelf to the eastern Weddell Sea. As the ice retreated, the gravitational transport processes On the continental slope ceased. Soon after the beginning of the ice retreat, the sea-ice coverage in the whole research area decreased. Simultaneously, the formation of the high salinity dense bottom water ceased, and the sediment composition at the continental slope then became influenced by the water masses of the Weddell Gyre. The formation of very cold Ice Shelf Water (ISW) started beneath the southward retreating Filchner-Ronne Ice Shelf somewhat later than 12,000 y.B.P. The ISW streamed primarily with lower velocities than those of today across the continental slope, and was conducted along the erosional step on the slope into the deep sea. At 7,500 y.B.P., the grounding line of the ice masses had retreated > 400 km to the south. A progressive retreat by additional 200 to 300 km probably led to the development of an Open water column beneath the ice south of Berkner Island at about 4,000 y.B.P. This in turn may have led to an additional ISW, which had formed beneath the Ronne Ice Shelf, to flow towards the Filcher Ice Shelf. As a result, increased flow of ISW took place over the continental margin, possibly enabling the ISW to spill over the erosional step On the upper continental slope towards the West. Since that time, there is no longer any documentation of the ISW in the sedimentary Parameters on the lower continental slope. There, recent sediments reflect the lower water masses of the Weddell Gyre. The sea-ice coverage in early Holocene time was again so dense that biogenic production was significantly restricted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the nodule field of the Peru Basin, situated south of the zone of high bioproductivity, a relatively high flux of biogenic matter explains a distinct redox boundary at about 10 cm depth separating very soft oxic surface sediments from stiffer suboxic sediments. Maximum abundance (50 kg/m**2) of diagenetic nodules is found near the calcite compensation depth (CCD), currently at 4250 m. There, the accretion rate of nodules is much higher (100 mm/Ma) than on ridges (5 mm/Ma). Highest accretion rates are found at the bottom of large nodules that repeatedly sink to a level immediately above the redox boundary. There, distinct diagenetic growth conditions prevail and layers of dense laminated Mn oxide of very pure todorokite are formed. The layering of nodules is mainly the result of organisms moving nodules within the oxic surface sediment from diagenetic to hydrogenetic environments. The frequency of such movements is much higher than that of climatic changes. Two types of nodule burial occur in the Peru Basin. Large nodules are less easily moved by organisms and become buried. Consequently, buried nodules generally are larger than surface nodules. This type of burial predominates in basins. At ridges where smaller nodules prevail, burial is mainly controlled by statistical selection where some nodules are not moved up by organisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A multidisciplinary oceanographic survey of the White Sea was carried out in the Gorlo Straight, Basin, and Kandalaksha Bay regions including estuaries of Niva, Kolvitza and Knyazhaya rivers. Hydrophysical study in the northern part of the Basin revealed long-lived step-like structures and inversions in vertical profiles of temperature and salinity, which formed due to tidal mixing of saline and cold Barents Sea waters and warmer White Sea waters in the Gorlo Straight. Biological studies revealed the main features of spatial distribution, as well as qualitative and quantitative composition of phyto- and zooplankton in all studied areas; tolerance of main zooplankton species to fresh water influence in estuaries was shown. Study of suspended matter in estuaries clearly demonstrated physicochemical transformations of material supplied by the rivers. Data on vertical particle flux in the deep part of the Kandalaksha Bay showed difference between the upper and near-bottom layers, which could result from sinking of spring phytoplankton bloom products and supply of terrigenic suspended matter from the nepheloid layer formed by tidal currents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The origin of three Red Sea submarine brine pools was investigated by analysis of the S and O isotope ratios of dissolved sulfate and Sr isotope ratios of dissolved Sr in the brines. Sulfur and O isotope ratios of sulfate and Sr isotope ratios of evaporitic source rocks for the brines were measured for comparison. The S, O and Sr isotope ratios of evaporites recovered from DSDP site 227 are consistent with an upper Miocene evaporites age. The Valdivia Deep brine formed by karstic dissolution of Miocene evaporites by overlying seawater and shows no signs of hydrothermal input. The Suakin Deep brines are derived from, or have isotopically exchanged with Miocene or older evaporites. There has been only minor dilution of the brine by overlying seawater. Strontium isotope ratios of Suakin brine may indicate addition of a minor (15%) amount of volcanic Sr to the brine, but there is no evidence of high temperature brine-rock interaction. The sulfate in the Atlantis II brine was apparently derived from seawater. The O isotope ratio of sulfate in the present Atlantis II brine could reflect isotopic exchange between seawater sulfate and the brine at approximately 255°C. Approximately 30% of the Sr in the Atlantis II brine is derived from the underlying basalt, probably by hydrothermal leaching. Atlantis II brine is the only known example from the Red Sea which has a significant high-temperature hydrothermal history.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Ice Station POLarstern (ISPOL) cruise revisited the western Weddell Sea in late 2004 and obtained a comprehensive set of conductivity-temperature-depth (CTD) data. This study describes the thermohaline structure and diapycnal mixing environment observed in 2004 and compares them with conditions observed more than a decade earlier. Hydrographic conditions on the central western Weddell Sea continental slope, off Larsen C Ice Shelf, in late winter/early spring of 2004/2005 can be described as a well-stratified environment with upper layers evidencing relict structures from intense winter near-surface vertical fluxes, an intermediate depth temperature maximum, and a cold near-bottom layer marked by patchy property distributions. A well-developed surface mixed layer, isolated from the underlying Warm Deep Water (WDW) by a pronounced pycnocline and characterized by lack of warming and by minimal sea-ice basal melting, supports the assumption that upper ocean winter conditions persisted during most of the ISPOL experiment. Much of the western Weddell Sea water column has remained essentially unchanged since 1992; however, significant differences were observed in two of the regional water masses. The first, Modified Weddell Deep Water (MWDW), comprises the permanent pycnocline and was less saline than a decade earlier, whereas Weddell Sea Bottom Water (WSBW) was horizontally patchier and colder. Near-bottom temperatures observed in 2004 were the coldest on record for the western Weddell Sea over the continental slope. Minimum temperatures were ~0.4 and ~0.3 °C colder than during 1992-1993, respectively. The 2004 near-bottom temperature/salinity characteristics revealed the presence of two different WSBW types, whereby a warm, fresh layer overlays a colder, saltier layer (both formed in the western Weddell Sea). The deeper layer may have formed locally as high salinity shelf water (HSSW) that flowed intermittently down the continental slope, which is consistent with the observed horizontal patchiness. The latter can be associated with the near-bottom variability found in Powell Basin with consequences for the deep water outflow from the Weddell Sea.