3 resultados para Coeducation between generations

em Publishing Network for Geoscientific


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nongenetic inheritance mechanisms such as transgenerational plasticity (TGP) can buffer populations against rapid environmental change such as ocean warming. Yet, little is known about how long these effects persist and whether they are cumulative over generations. Here, we tested for adaptive TGP in response to simulated ocean warming across parental and grandparental generations of marine sticklebacks. Grandparents were acclimated for two months during reproductive conditioning, whereas parents experienced developmental acclimation, allowing us to compare the fitness consequences of short-term vs. prolonged exposure to elevated temperature across multiple generations. We found that reproductive output of F1 adults was primarily determined by maternal developmental temperature, but carry-over effects from grandparental acclimation environments resulted in cumulative negative effects of elevated temperature on hatching success. In very early stages of growth, F2 offspring reached larger sizes in their respective paternal and grandparental environment down the paternal line, suggesting that other factors than just the paternal genome may be transferred between generations. In later growth stages, maternal and maternal granddam environments strongly influenced offspring body size, but in opposing directions, indicating that the mechanism(s) underlying the transfer of environmental information may have differed between acute and developmental acclimation experienced by the two generations. Taken together, our results suggest that the fitness consequences of parental and grandparental TGP are highly context dependent, but will play an important role in mediating some of the impacts of rapid climate change in this system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transgenerational effects can buffer populations against environmental change, yet little is known about underlying mechanisms, their persistence, or the influence of environmental cue timing. We investigated mitochondrial respiratory capacity (MRC) and gene expression of marine sticklebacks that experienced acute or developmental acclimation to simulated ocean warming (21°C) across three generations. Previous work showed that acute acclimation of grandmothers to 21°C led to lower (optimised) offspring MRCs. Here, developmental acclimation of mothers to 21°C led to higher, but more efficient offspring MRCs. Offspring with a 21°Cx17°C grandmother-mother environment mismatch showed metabolic compensation: their MRCs were as low as offspring with a 17°C thermal history across generations. Transcriptional analyses showed primarily maternal but also grandmaternal environment effects: genes involved in metabolism and mitochondrial protein biosynthesis were differentially expressed when mothers developed at 21°C, whereas 21°C grandmothers influenced genes involved in hemostasis and apoptosis. Genes involved in mitochondrial respiration all showed higher expression when mothers developed at 21° and lower expression in the 21°Cx17°C group, matching the phenotypic pattern for MRCs. Our study links transcriptomics to physiology under climate change, and demonstrates that mechanisms underlying transgenerational effects persist across multiple generations with specific outcomes depending on acclimation type and environmental mismatch between generations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Shallow groundwater aquifers are often influenced by anthropogenic contaminants or increased nutrient levels. In contrast, deeper aquifers hold potentially pristine paleo-waters that are not influenced by modern recharge. They thus represent important water resources, but their recharge history is often unknown. In this study groundwater from two aquifers in southern Germany were analyzed for their hydrogen and oxygen stable isotope compositions. One sampling campaign targeted the upper aquifer that is actively recharged by modern precipitation, whereas the second campaign sampled the confined, deep Benkersandstein aquifer. The groundwater samples from both aquifers were compared to the local meteoric water line to investigate sources and conditions of groundwater recharge. In addition, the deep groundwater was dated by tritium and radiocarbon analyses. Stable and radiogenic isotope data indicate that the deep-aquifer groundwater was not part of the hydrological water cycle in the recent human history. The results show that the groundwater is older than ~20,000 years and most likely originates from isotopically depleted melt waters of the Pleistocene ice age. Today, the use of this aquifer is strictly regulated to preserve the pristine water. Clear identification of such non-renewable paleo-waters by means of isotope geochemistry will help local water authorities to enact and justify measures for conservation of these valuable resources for future generations in the context of a sustainable water management.