10 resultados para Cloud point
em Publishing Network for Geoscientific
Resumo:
This paper assesses the along strike variation of active bedrock fault scarps using long range terrestrial laser scanning (t-LiDAR) data in order to determine the distribution behaviour of scarp height and the subsequently calculate long term throw-rates. Five faults on Cretewhich display spectacular limestone fault scarps have been studied using high resolution digital elevation model (HRDEM) data. We scanned several hundred square metres of the fault system including the footwall, fault scarp and hanging wall of the investigated fault segment. The vertical displacement and the dip of the scarp were extracted every metre along the strike of the detected fault segment based on the processed HRDEM. The scarp variability was analysed by using statistical and morphological methods. The analysis was done in a geographical information system (GIS) environment. Results show a normal distribution for the scanned fault scarp's vertical displacement. Based on these facts, the mean value of height was chosen to define the authentic vertical displacement. Consequently the scarp can be divided into above, below and within the range of mean (within one standard deviation) and quantify the modifications of vertical displacement. Therefore, the fault segment can be subdivided into areas which are influenced by external modification like erosion and sedimentation processes. Moreover, to describe and measure the variability of vertical displacement along strike the fault, the semi-variance was calculated with the variogram method. This method is used to determine how much influence the external processes have had on the vertical displacement. By combining of morphological and statistical results, the fault can be subdivided into areas with high external influences and areas with authentic fault scarps, which have little or no external influences. This subdivision is necessary for long term throw-rate calculations, because without this differentiation the calculated rates would be misleading and the activity of a fault would be incorrectly assessed with significant implications for seismic hazard assessment since fault slip rate data govern the earthquake recurrence. Furthermore, by using this workflow areas with minimal external influences can be determined, not only for throw-rate calculations, but also for determining samples sites for absolute dating techniques such as cosmogenic nuclide dating. The main outcomes of this study include: i) there is no direct correlation between the fault's mean vertical displacement and dip (R² less than 0.31); ii) without subdividing the scanned scarp into areas with differing amounts of external influences, the along strike variability of vertical displacement is ±35%; iii) when the scanned scarp is subdivided the variation of the vertical displacement of the authentic scarp (exposed by earthquakes only) is in a range of ±6% (the varies depending on the fault from 7 to 12%); iv) the calculation of the long term throw-rate (since 13 ka) for four scarps in Crete using the authentic vertical displacement is 0.35 ± 0.04 mm/yr at Kastelli 1, 0.31 ± 0.01 mm/yr at Kastelli 2, 0.85 ± 0.06 mm/yr at the Asomatos fault (Sellia) and 0.55 ± 0.05 mm/yr at the Lastros fault.
Resumo:
Two 7-day mesocosm experiments were conducted in October 2012 at the Instituto Nacional de Desenvolvimento das Pescas (INDP), Mindelo, Cape Verde. Surface water was collected at night before the start of the respective experiment with RV Islândia south of São Vicente (16°44.4'N, 25°09.4'W) and transported to shore using four 600L food safe intermediate bulk containers. Sixteen mesocosm bags were distributed in four flow-through water baths and shaded with blue, transparent lids to approximately 20% of surface irradiation. Mesocosm bags were filled from the containers by gravity, using a submerged hose to minimize bubbles. The accurate volume inside the individual bags was calculated after addition of 1.5 mmol silicate and measuring the resulting silicate concentration. The volume ranged from 105.5 to 145 L. The experimental manipulation comprised addition of different amounts of inorganic N and P. In the first experiment, the P supply was changed at constant N supply in thirteen of the sixteen units, while in the second experiment the N supply was changed at constant P supply in twelve of the sixteen units. In addition to this, "cornerpoints" were chosen that were repeated during both experiments. Four cornerpoints should have been repeated, but setting the nutrient levels in one mesocosm was not succesfull and therefore this mesocosm also was set at the center point conditions. Experimental treatments were evenly distributed between the four water baths. Initial sampling of the mesocosms on day 1 of each run was conducted between 9:45 and 11:30. After nutrient manipulation, sampling was conducted on a daily basis between 09:00 and 10:30 for days 2 to 8.