891 resultados para Clay. Grog. Manganese residue. Channel sediment. Paver ceramic
em Publishing Network for Geoscientific
Resumo:
The clay mineral assemblages of the ca. 1600 m thick Cenozoic sedimentary succession recovered at the CRP-1, CRP-2/2A and CRP-3 drill sites off Cape Roberts on the McMurdo Sound shelf, Antarctica, were analysed in order to reconstruct the palaeoclimate and the glacial history of this part of Antarctica. The sequence can be subdivided into seven clay mineral units that reflect the transition from humid to subpolar and polar conditions. Unit I (35-33.6 Ma) is characterised by an almost monomineralic assemblage consisting of well crystalline, authigenic smectite, and therefore does not allow a palaeoclimatic reconstruction. Unit II (33.6-33.1 Ma) has also a monomineralic clay mineral composition. However, the assemblage consists of variably crystallized smectite that, at least in part, is of detrital origin and indicates chemical weathering under a humid climate. The main source area for the clays was in the Transantarctic Mountains. Minor amounts of illite and chlorite appear for the first time in Unit III (33.1-31 Ma) and suggest subordinate physical weathering. The sediments of Unit IV (31-30.5 Ma) have strongly variable smectite and illite concentrations indicating an alternation of chemical weathering periods and physical weathering periods. Unit V (30.5-24.2 Ma) shows a further shift towards physical weathering. Unit VI (24.2-18.5 Ma) indicates strong physical weathering under a cold climate with persistent and intense illite formation. Unit VII (18.5 Ma to present) documents an additional input of smectite derived from the McMurdo Volcanic Group in the south.
Resumo:
The Cenozoic sediments of the CRP-3 drill core from the continental shelf of McMurdo Sound in Ross Sea, Pacific sector of the Southern Ocean, have been investigated for their clay mineral assemblages, especially for the smectite abundances, concentrations and crystallinities. The assemblages of CRP-3 are very different from those of the CRP-1 and CRP-2/2A drill cores. Thus, an almost monomineralic assemblage characterizes the sequence below 330 mbsf. This assemblage is made of well-crystallized smectite with probably authigenic origin between 800 mbsf and 625 mbsf. From 625 mbsf to 330 mbsf the assemblage consists of moderately crystallized smectite that, at least in part, seems to be of detrital origin and thus indicates weathering under a relatively warm and wet climate. In the interval 330-145 mbsf, smectite concentrations fluctuate between 50% and 100% and probably document alternating phases of chemical weathering under a warm and wet climate and physical weathering under a relatively cool and dry climate. Above 145 mbsf the smectite decreases dramatically to concentrations of about 20% and becomes poorly crystalline. In contrast, illite and chlorite become more abundant. Such an assemblage is typical for early Oligocene and younger sediments in McMurdo Sound and reflects physical weathering conditions under a cool climate on a glaciated Antarctic continent. Correlations of the changes in the clay mineral spectrum of CRP-3 with other cores from McMurdo Sound and from other parts of the Southern Ocean has to remain speculative at this stage, because of the poor age control.
Resumo:
Sediments of the CRP-2/2A drill core from the continental shelf of McMurdo Sound in Ross Sea, Pacific sector of the Southern Ocean, have been investigated for their clay mineral assemblages, especially for the smectite contents and smectite crystallinities. Highest smectite amounts and best crystallinities occur in three intervals below 485 mbsf in CRP-2/2A. They indicate deposition of sediments during a time when chemical weathering was active on large ice-free areas on the nearby Antarctic continent. In he upper part of the core, smectite contents are much lower and crystallinities are worse. This clay mineral composition indicates deposition of sediments during a time when physical weathering prevailed on an ice-covered continent. At deep-sea sites around Antarctica the shift from smectite-dominated to smectite-poor and illite-rich assemblages is well dated as earliest Oligocene, 33.9-33.1 Ma, and documents the onset of continental glaciation in East Antarctica. At CIROS-1 a corresponding shift in the clay mineralogy was observed at a depth of 425-445 mbsf.
Resumo:
Compaction curves for 11 samples from the mixed sediments and calcareous chalk with clay from the Caribbean Sites 999 and 1001 are discussed with reference to compaction curves for calcareous ooze and chalk of the Ontong Java Plateau (Leg 130). The burial history is discussed from preconsolidation data and present burial conditions and suggests a removal of ~400 m of sediment at the hiatus 166 meters below seafloor (mbsf) at Site 1001. This interpretation predicts a previous burial to >500 mbsf for depth intervals containing microstylolites, which corresponds to observations at Sites 999 and 807 (Ontong Java Plateau). Thus, data from three sites from two widely separate regions indicate that microstylolites in carbonates form at minimum burial depths deeper than 500 m. No direct link between formation of microstylolites and cementation was found, suggesting that dissolution and precipitation are not necessarily related. Porosity rebound during core retrieval could not be detected for soft sediments, whereas a porosity rebound of ~2% was deduced for deeper, cemented intervals. Comparing the compaction curves, two distinct rates of porosity loss are noted: (1) samples dominated by clay (>45% insoluble residue) compact at a higher rate than samples dominated by fine-grained carbonate and (2) fine-grained carbonate supported samples (with <45% insoluble residue) compact at the same rate irrespective of the content of nonsupporting microfossils or pore-filling clay.
Resumo:
The purpose of this study is to clarify the sedimentary history and chemical characteristics of clay minerals found in sediments deposited in the distal part of the Bengal Fan since the Himalayas were uplifted 17 m.y. ago. A total of seventy-eight samples were collected from three drilled cores which were to be used for the clay mineral analyses by means of XRD and ATEM. The results obtained from the analyses show that individual clay mineral species in the sediment samples at each site have similar features when the samples are of the same age, whereas these species have different features in samples of differing geological ages. Detrital clay minerals such as illite and chlorite were deposited in greater amounts than kaolinite and smectite during the Early to Middle Miocene. This means that the Himalayan uplift was vigorous at least until the Middle Miocene. In the Pliocene chemical weathering was more prevalent so that instead, in the distal part of the Bengal Fan, kaolinite shows the highest concentrations. This would accord with weaker uplift in the Himalayas. In the Pleistocene period, vigorous Himalayan uplift is characterized by illite-rich sediment in place of kaolinite. In the Holocene, smectite shows the highest concentration in place of the illite and kaolinite which were the predominant clay minerals of the earlier periods. Increasing smectite concentration suggests the Himalayan uplift to have been stable after the Pleistocene period. The smectite analyzed here is found to be dioctahedral Fe-beidellite, and it originated largely from the augite-basalt on the Indian Deccan Traps. The tri-octahedral chlorite is subdivided into three sub-species, an Fe-type, a Mg-type and an intermediate type. The mica clay mineral can be identified as di-octahedral illite which is rich in potassium. The chemical composition and morphology of each clay mineral appears to exhibit no change with burial depth in the sedimentary columns. This implies that there was no systematic transformation of clay minerals with time.