5 resultados para Citadel, the Military College of South Carolina--Periodicals
em Publishing Network for Geoscientific
Resumo:
This dataset contains raster grids in GeoTIFF format describing the benthic environment of South Georgia. The data include topographic layers that are directly calculated from a bathymetry grid (Slope, Aspect, Roughness, Slope, Terrain Ruggedness Index, Topographic Position Index). A benthic classification of the area is included, based on topographic layers. Also included are sea-bed environmental layers that are interpolated from global three dimensional grids (Alkalinity, Apparent Oxygen Utilisation, Omega Aragonite, Omega Calcite, Dissolved Oxygen, Nitrate, pH, Phosphate, Salinity, Silicate, Temperature, and Total CO2). These layers were used to construct a habitat suitability model for Octocorallia. The geographic extent is 43°57'56.65"W - 33°45'38.19"W and 52°47'29.50"S - 56° 9'11.03"S. The spatial resolution is 150m x 150m (except for benthic classification wihch is 450m x 450m). The map projection is EPSG:3762.
Resumo:
Aim To test whether the radiation of the extremely rich Cape flora is correlated with marine-driven climate change. Location Middle to Late Miocene in the south-east Atlantic and the Benguela Upwelling System (BUS) off the west coast of South Africa. Methods We studied the palynology of the thoroughly dated Middle to Late Miocene sediments of Ocean Drilling Program (ODP) Site 1085 retrieved from the Atlantic off the mouth of the Orange River. Both marine upwelling and terrestrial input are recorded at this site, which allows a direct correlation between changes in the terrestrial flora and the marine BUS in the south-east Atlantic. Results Pollen types from plants of tropical affinity disappeared, and those from the Cape flora gradually increased, between 10 and 6 Ma. Our data corroborate the inferred dating of the diversification in Aizoaceae c. 8 Ma. Main conclusions Inferred vegetation changes for the Late Miocene south-western African coast are the disappearance of Podocarpus-dominated Afromontane forests, and a change in the vegetation of the coastal plain from tropical grassland and thicket to semi-arid succulent vegetation. These changes are indicative of an increased summer drought, and are in step with the development of the southern BUS. They pre-date the Pliocene uplift of the East African escarpment, suggesting that this did not play a role in stimulating vegetation change. Some Fynbos elements were present throughout the recorded period (from 11 Ma), suggesting that at least some elements of this vegetation were already in place during the onset of the BUS. This is consistent with a marine-driven climate change in south-western Africa triggering substantial radiation in the terrestrial flora, especially in the Aizoaceae.
Resumo:
After death of benthic and planktic foraminifera their tests intensive dissolve in sediments of the upper sublittoral zone (depth 30-60 m) in the highest productivity area of surface water in the northern Peruvian region. Dissolution of fine pelitic ooze is more intensive than of sandy sediments. Rate of dissolution is lower in the lower sublittoral zone (60-200 m) than in the upper part of the zone. Within the upper bathyal zone (300-500 m) dissolution decreases and results to accumulation of carbonate test in this zone. Benthic tests are more abundant than planktic ones. Very poor species composition and a peculiar set of species are characteristic of foraminiferal assemblages found in the sublittoral and upper bathyal zones along the Peruvian coast.