9 resultados para Choruses, Sacred (Mixed voices) with string orchestra
em Publishing Network for Geoscientific
Resumo:
The discovery of a neolithic pile field in the shallow water near the eastern shore of the Degersee confirmed earlier palynological and sedimentological studies stating that early man was active in the region since more than 6000 years. The already available off-site data were freshly assessed, completed by additional data from old and new cores and the interpretations revised. A common time scale for the off-site data and the on-site data was obtained by AMS dating of terrestrial macro remains of the neolithic section of off-site core De_I+De_H. The ages can thus be parallelled with AMS ages of construction timber on-site. Pollen analyses from all cores provide a further time scale. The continuously and densely sampled pollen profile of the profundal zone embracing the entire Late glacial and Holocene serves as a reference. From the Boreal onwards the relative ages are transformed by AMS ages and varve counts into calibrated and absolute. A transect cored close to the neolithic pile field across the lake marl-platform demonstrates its geological architecture in the shallow water since the Lateglacial. Studies of the microfabric of thin sections of drilled cores and of box cores from the excavations demonstrate that neolithic settlements now at 2-3,5 m water depth had been erected on lake marl freshly fallen dry, thus indicating earlier lake levels dropped by 1.5-2 m. The neolithic section of the highly resolved off-site profile in the lake=s profundal zone has laminated and calcareous zones alternating with massive ones. Assemblages of diatoms and concentrations of trace elements changing simultaneously characterise the calcareous sections as deposits of low lake levels that lasted between some 40 and more than 300 years. The ages of discovered lake shore dwellings fall into calcareous segments with low lake levels. From the end of the Upper Atlantic period (F VII) appear Secondary Forest Cycles in the beech forest, a man-made sequence of repeated vegetational development with an identical pattern: With a decrease of beech pollen appear pollen of grasses, herbs and cultural indicators. These are suppressed by the light demanding hazel and birch, those again by ash, and finally by the shade demanding beech forming a new pollen peak. Seven main Forest Cycles are identified In the upper Neolithic period each comprising some 250, 450 or 800 years. They are subdivided into subcycles that can be broken down by very dense sampling in even shorter cycles of decadal length. Farming settlers have caused minor patchy clearances of the beech-mixed-forest with the use of fire. The phases of clearance coincide with peaks of charcoal and low stands of the lake levels. The Secondary Forest Cycles and the continuous occurrence of charcoal prove a continued occupation of the region. Together with the repeated restoration of the beech climax forest they point to pulsating occupation probably associated with dynamic demography. The synchronism of the many palynological, sedimentological and archaeological data point to an external forcing as the climate that affects comprehensively all these proxies. The fluctuations of the activity of the sun as manifested in the residual d14C go largely along with the proxies. The initial clearances at the begin of the forest cycles are linked to low lake levels and negative values of d14C that point to dry and warm phases of a more continental climate type. The subcycles exist independent from climatic changes, indicating that early man acted largely independent from external forces.
Resumo:
The phytoplankton community composition and productivity in waters of the Amundsen Sea and surrounding sea ice zone were characterized with respect to iron (Fe) input from melting glaciers. High Fe input from glaciers such as the Pine Island Glacier, and the Dotson and Crosson ice shelves resulted in dense phytoplankton blooms in surface waters of Pine Island Bay, Pine Island Polynya, and Amundsen Polynya. Phytoplankton biomass distribution was the opposite of the distribution of dissolved Fe (DFe), confirming the uptake of glacial DFe in surface waters by phytoplankton. Phytoplankton biomass in the polynyas ranged from 0.6 to 14 µg Chl a / L, with lower biomass at glacier sites where strong upwelling of Modified Circumpolar Deep Water from beneath glacier tongues was observed. Phytoplankton blooms in the polynyas were dominated by the haptophyte Phaeocystis antarctica, whereas the phytoplankton community in the sea ice zone was a mix of P. antarctica and diatoms, resembling the species distribution in the Ross Sea. Water column productivity based on photosynthesis versus irradiance characteristics averaged 3.00 g C /m**2/d in polynya sites, which was approximately twice as high as in the sea ice zone. The highest water column productivity was observed in the Pine Island Polynya, where both thermally and salinity stratified waters resulted in a shallow surface mixed layer with high phytoplankton biomass. In contrast, new production based on NO3 uptake was similar between different polynya sites, where a deeper UML in the weakly, thermally stratified Pine Island Bay resulted in deeper NO3 removal, thereby offsetting the lower productivity at the surface. These are the first in situ observations that confirm satellite observations of high phytoplankton biomass and productivity in the Amundsen Sea. Moreover, the high phytoplankton productivity as a result of glacial input of DFe is the first evidence that melting glaciers have the potential to increase phytoplankton productivity and thereby CO2 uptake, resulting in a small negative feedback to anthropogenic CO2 emissions.
Resumo:
This study presents new evidence of when and how the Western Pacific Warm Pool (WPWP) was established in its present form. We analyzed planktic foraminifera, oxygen isotopes, and Mg/Ca ratios in upper Miocene through Pleistocene sediments collected at Deep Sea Drilling Program (DSDP) Site 292. These data were then compared with those reported from Ocean Drilling Program (ODP) Site 806. Both drilling sites are located in the western Pacific Ocean. DSDP Site 292 is located in the northern margin of the modern WPWP and ODP Site 806 near the center of the WPWP. Three stages of development in surface-water conditions are identified in the region using planktic foraminferal data. During the initial stage, from 8.5 to 4.4 Ma, Site 806 was overlain by warm surface water but Site 292 was not, as indicated by the differences in faunal compositions and sea-surface temperature (SST) between the two sites. In addition, the vertical thermal gradient at Site 292 was weak during this period, as indicated by the small differences in the delta18O values between Globigerinoides sacculifer and Pulleniatina spp. During stage two, from 4.4 to 3.6 Ma, the SST at Site 292 rapidly increased to 27 °C, but the vertical thermal gradient had not yet be strengthened, as shown by Mg/Ca ratios and the presence of both mixed-layer dwellers and thermocline dwellers. Finally, a warm mixed layer with a high SST ca. 28 °C and a strong vertical thermal gradient were established at Site 292 by 3.6 Ma. This event is marked by the dominance of mixed-layer dwellers, a high and stable SST, and a larger differences in the delta18O values between G. sacculifer and Pulleniatina spp. Thus, evidence of surface-water evolution in the western Pacific suggests that Site 292 came under the influence of the WPWP at 3.6 Ma. The northward expansion of the WPWP from 4.4 to 3.6 Ma and the establishment of the modern WPWP by 3.6 Ma appear to be closely related to the closure of the Indonesian and Central American seaways.
Resumo:
Studies of picophytoplankton were carried out in the open Black Sea from February to April 1991 with concomitant blooming of diatoms. During this period cyanobacteria predominated in picoplankton averaging 98.8% of total picophytoplankton abundance and 95% of total picoplankton biomass. In February number of cells reached 1.5x10**9 per liter in the East Black Sea. Picoplankton biomass decreased during the observation period. From February to March biomass varied from 452 to 4918 mg/m**2 (av. 1632 mg/m**2), and from March through April from 4 to 656 mg/m**2 (av. 190 mg/m**2). Vertical distribution of picoplankton was determined by the upper margin of the main pycnocline. The major part of picoplankton biomass occurred in the mixed layer. With appearance of seasonal pycnoclines in the last days of March maximum biomass occurred under the upper mixed layer. No relationship was observed between Nitzschia delicatula bloom and picoplankton.
Resumo:
During Ocean Drilling Program Leg 190 several turbidite successions in the Nankai Trough were drilled through including Pleistocene trench fill (Sites 1173 and 1174), Pleistocene-Pliocene slope basin deposits and underlying trench fill (Sites 1175 and 1176), Miocene Shikoku Basin deposits (Site 1177), and upper Miocene trench fill (Site 1178). Sands from the Pleistocene trench-fill succession of the Nankai Trough are of mixed derivation with significant monomineralic components (quartz and feldspar) and mafic to intermediate volcanic rock fragments, in addition to sedimentary and less abundant metamorphic detritus. They have a source in the Izu collision zone in central Honshu. Sands from the slope and accreted trench fill at Sites 1175 and 1176 are dominated by quartz with less abundant feldspar, sedimentary rock fragments, and only minor volcanic and metamorphic rock fragments. In contrast to the trench turbidites of Sites 1173 and 1174, these sands are very quartzose with characteristic radiolarian chert fragments. Volcanic rock fragments are mainly of silicic composition. Potential sources of these sands are uplifted subduction complexes of southwest Japan. Sands from the accreted trench turbidites at Site 1178 have clast types similar to those at Sites 1175 and 1176. In contrast, however, framework detrital modes are distinctive, with Site 1178 sands having substantially lower total quartz contents and more abundant fine-grained sedimentary rock fragments. These sands were also probably derived from the island of Shikoku, but their composition indicates that sedimentary rocks were abundant in the source area and these may have been Miocene forearc basin successions that were largely removed by erosion. Erosional remnants of Miocene forearc basin deposits are present on the Kii Peninsula east-northeast of Shikoku. Erosion followed a phase of exhumation of the Shimanto Belt indicated by apatite fission track ages at ~10 Ma. Sand in the lower-upper Miocene turbidites of the lower Shikoku Basin section at Site 1177 is more varied in composition, with the upper part of the unit similar to Site 1178 (i.e., rich in sedimentary rock fragments) and the lower part similar to those at Sites 1175 and 1176 (i.e., rich in quartz with some silicic volcanic rock fragments). Sands from the lower part of the Miocene turbidite unit were derived from a continental source with plutonic and volcanic rocks, possibly the inner zone of southwest Japan.
Resumo:
Analyses of 40 carbonate core samples - 27 from Site 535, 12 from Site 540, and 1 from Site 538A - have confirmed many of the findings of the Shipboard Scientific Party. The samples, all but one Early to mid-Cretaceous in age (Berriasian to Cenomanian), reflect sequences of cyclically anoxic and oxic depositional environments. They are moderately to very dark colored, dominantly planar-parallel, laminated lime mudstones. Most show the effects of intense mechanical compaction. Visual kerogen characteristics and conventional Rock-Eval parameters indicate that these deep basinal carbonates contain varying mixtures of thermally immature kerogen derived from both marine and terrigenous precursors. However, variations in kerogen chemistry are evident upon analysis of the pyrolysis mass spectral data in conjunction with the other geochemical analyses. Particularly diagnostic is the reduction index, Rl, a measure of H2S produced during pyrolysis. Total organic carbon, TOC, ranges from 0.6 to 6.6%, with an overall average of 2.4%. Average TOCs for these fine-grained mudstones are: late Eocene 2.5% (1 sample), Cenomanian 2.2% (6), Albian 2.0% (10), Aptian 1.3% (1), Barremian-Hauterivian 2.8% (11), late Valanginian 4.8% (3), Berriasian-early Valanginian 1.6% (7). Most of the carbonates have source-potential ratings of fair to very good of predominantly oil-prone to mixed kerogen, with only a few gas-prone samples. The ratings correlate well with the inferred depositional environments, i.e., whether oxic or anoxic. Several new organic-geochemical parameters, especially Rl, based on pyrolysis mass spectrometry of powdered whole-rock samples, support this view. Tar from fractures in laminated to bioturbated limestones of Unit IV (late Valanginian) at 535-58-4, 19-20 cm (530 m sub-bottom) appears to be mature, biodegraded, and of migrated rather than on site indigenous origin.
Resumo:
Palynological investigations of sediments from northern Bavaria (Rhön, Grabfeld, Lange Berge) reveal the Late Glacial and Postglacial history of the regional vegetation. The older sedirnents were found in the Rhön (Schwarzes Moor) and date back into the Bölling Period. At the end of that period pine spread into the Grabfeld. In both areas Lacher Tuff has been found. A radiocarbon date of 10,300 BP was found for the Late Glacial - Postglacial transition and one of 9300 BP for the Preboreal - Boreal transition. Hazel reached its highest values in the Rhön around 7,400 BP. During the Atlanticum a deciduous mixed oak forest covered the Rhön and Grabfeld regions. Beech dominated since the Subatlanticum. In the Lange Berge region, however, a mixed forest with Fagus, Picea, Pinus and Abies developed. In the Rhön first anthropogenic influence was found during the Latene Period. The boundary between zone IX and X has been dated at 820 A.D., and the start of extensive forest clearances at 1000 A. D. A culmination of landuse was found for the Medieval Period. At the end of that period however the Rhön was deserted. New forest clearances started around 1500 A.D., but were interrupted by the 'Thirty Years War'. Afterwards the Rhön got its present appearance.
Resumo:
Samples from sutface sediments of the shell, continental slope, and adjacent deep sea regions off West Africa between 27° N and 15° N were investigated with respect to grain size distribution of the total samples, sand contents of the acid insoluble residues, carbonate content of the total samples, and the separate grain size fractions, specific surfaces, colours and mineralogical composition of the clay fractions. The grain size distributions of the total samples of the sediments of the shelf and the continental slope off Spanish-Sahara are controlled mainly by biogenic components. The supply of terrigeneous material in this area is very low. At deeper parts of the continental slope and in the deep sea areas, the relative amounts of carbonate minerals in the sediments are considerably reduced. The prevailing sand contents of the upper slope changes into clay dominance. On the shelf of Mauritania - represented by profiles extending down to 200 m water depth - the grain size is also controlled mainly by biogenic carbonates. Nevertheless, the admixture of fossil silicate components is important, too. The southern parts of the area is investigated are located in a region influenced by sediments of the Senegal River, which especially control the contents of silt and clay. The silicate sands, predominately of quartz, are fossil and form a mixed sediment with younger deposits. The carbonate contents of the different grain size fractions are formed either by sedimentation of carbonate and silicate particles of the respective grain size or by autochtonous disintegration of coarser sediment particles, as shown by the occurence of Mg-rich calcite and especially aragonite in the clay sized fraction. In the northern parts of the area investigated, which have very minute terrigeneous supply, the latter mechanism is the dominant factor, controlling the carbonate contents of the fine grain sized fractions. In the vicinity of the mouth of the Senegal the carbonate contents are influenced by extremely high dilution with terrigencous silicates. Mg-rich calcite and aragonite are produced preferentially in shallow slope and shelf areas up to 500 m of water depth. The specific surfaces of the carbonate-free clay fractions indicate that the clay fractions of the shelfareas with little terrigenous supply consits of relatively coarser particles. Very fine particles are removed and transported towards the deep sea. Lateral differentiation of this kind was not observed in the area off Senegal. The high surface areas, characterizing the clay fractions of this region, are thought to be due to high montmorillonite contents as was found for deep seas sediments. The mineralogical composition of the clay fraction from the southern parts of the area is characterized by high kaolinite and montmorillonite contents, while in the northern illite is predominating. At least two types of montmorillionites are present: in areas influenced by the Senegal mostly one type was found, which could swell to 17; on the shelves and slopes of the other regions the montmorillonite-group is represented by a montmorillonite-mica-type mixed-layer mineral. A "glauconite", found in the sand fraction, which had very similar properties to those of the montmorillonite-mica mixed-layer, is believed to be the source of this mixed-layer-type mineral. Palygorskite is present in all samples out of range of the Senegal supply. It may be an indicator of eolian transported material. The occurence of rich palygorskit deposits in the arid hinterlands emphasizes the terrestrial origin.
Resumo:
Along with increasing oceanic CO2 concentrations, enhanced stratification constrains phytoplankton to shallower upper mixed layers with altered light regimes and nutrient concentrations. Here, we investigate the effects of elevated pCO2 in combination with light or nitrogen-limitation on 13C fractionation (epsilon p) in four dinoflagellate species. We cultured Gonyaulax spinifera and Protoceratium reticulatum in dilute batches under low-light (LL) and high-light (HL) conditions, and grew Alexandrium fundyense and Scrippsiella trochoidea in nitrogen-limited continuous cultures (LN) and nitrogen-replete batches (HN). The observed CO2-dependency of epsilon p remained unaffected by the availability of light for both G. spinifera and P. reticulatum, though at HL epsilon p was consistently lower by about 2.7 per mil over the tested CO2 range for P. reticulatum. This may reflect increased uptake of (13C-enriched) bicarbonate fueled by increased ATP production under HL conditions. The observed CO2-dependency of epsilon p disappeared under LN conditions in both A. fundyense and S. trochoidea. The generally higher epsilon p under LN may be associated with lower organic carbon production rates and/or higher ATP:NADPH ratios. CO2-dependent epsilon p under non-limiting conditions has been observed in several dinoflagellate species, showing potential for a new CO2-proxy. Our results however demonstrate that light- and nitrogen-limitation also affect epsilon p, thereby illustrating the need to carefully consider prevailing environmental conditions.