19 resultados para Choroid plexus

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Neogene biostratigraphy presented here is based on the study of 230 samples through 737 m of pelagic sediment in Hole 806B. Sediment accumulation is interrupted only once in the uppermost lower Miocene (Zone N6), apparently coincident with a widespread deep-sea hiatus. Preservation of planktonic foraminifers through the section ranges from good to moderately poor. One hundred and ten species of planktonic foraminifers were identified; taxonomic notes on most species are included. All of the standard low-latitude Neogene foraminiferal zones are delineated, with the exceptions of Zones N8 and N9 because of a high first occurrence of Orbulina, and Zones N18 and N19 because of a high first occurrence of Sphaeroidinella dehiscens. Good agreement exists between the published account of the variation in planktonic foraminiferal species richness and the rates of diversification and turnover, and measurements of these evolutionary indexes in the record of Hole 806B. The global pattern of change in tropical/transitional species richness is paralleled in Hole 806B, with departures caused by either ecological conditions peculiar to the western equatorial Pacific or by inexactness in the estimation of million-year intervals in Hole 806B. Temporal changes in the relative abundance of taxa in the sediment assemblages, considered in light of their depth habitats, reveal a detailed picture of historical change in the structure of the upper water column over the Ontong Java Plateau. The dominance of surface dwellers (Paragloborotalia kugleri, P. mayeri, Dentoglobigerina altispira, Globigerinita glutinata, and Globigerinoides spp.) throughout the lower and middle Miocene is replaced by a more equitable distribution of surface (D. altispira and Globigerinoides spp.), intermediate (Globorotalia menardii plexus), and deep (Streptochilus spp.) dwellers in the late Miocene, following the closing of the Indo-Pacific Seaway and the initiation of large-scale glaciation in the Antarctic. The shoaling of the thermocline along the equator engendered by these climatic and tectonic events persisted through the Pliocene, when initial increases in the abundance of a new set of shallow, intermediate, and deep dwelling species of planktonic foraminifers coincide with the closing of the Panamanian Seaway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Middle Eocene Climatic Optimum (MECO) is a major transient warming event that occurred at ~ 40 Ma and reversed a long-term cooling trend through the early and middle Eocene. We report the results of a high-resolution, quantitative study of siliceous microfossils at Ocean Drilling Program Sites 748 and 749 (Southern Kerguelen Plateau, Southern Ocean, ~ 58°S) across a ~ 1.4 myr interval spanning the MECO event. At both sites, a significant increase in biosiliceous sedimentation is associated with the MECO event. Rich siliceous planktonic microfossil assemblages in this interval are unusual in that they are dominated by ebridians, with radiolarians as a secondary major component. Silicoflagellates and diatoms comprise only a minor fraction of the assemblage, in contrast to siliceous microfossil assemblages that characterize modern Southern Ocean sediments. Based on our new siliceous microfossil records, we interpret two ~ 300 kyr periods of elevated nutrient availability in Southern Ocean surface waters which span the peak warming interval of the MECO and the post-MECO cooling interval. A diverse assemblage of large silicoflagellates belonging to the Dictyocha grandis plexus is linked to the rapid rise in sea-surface temperatures immediately prior to peak warmth, and a pronounced turnover is observed in both ebridian and silicoflagellate assemblages at the onset of peak warming. The interval of peak warmth is also characterized by high abundance of cosmopolitan ebridians (e.g., Ammodochium spp.) and silicoflagellates (e.g., Naviculopsis spp.), and increased abundance of tropical and subtropical diatom genera (e.g., Asterolampra and Azpeitia). These observations confirm the relative pattern of temperature change interpreted from geochemical proxy data at multiple Southern Ocean sites. Furthermore, rapid assemblage changes in both autotrophic and heterotrophic siliceous microfossil groups indicate a reorganization of Southern Ocean plankton communities in response to greenhouse warming during the MECO event.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

From the DSDP Legs 1, 11, 13, 17, 25, 27, 32, 36, 41, 43, 44, 50, and 62 the Lower Cretaceous foraminifers have been investigated for biostratigraphical, taxonomical, and palaeoecological purposes. An overview of the cored Lower Cretaceous sections of Leg 1-80 is given. In the Northern Atlantic Ocean characteristic foraminiferal faunas are missing from the Upper Tithonian to the Valanginian due to a marked regression which caused hiatuses. In areas without black shale conditions Valanginian to Barremian medium rich to poor microfaunas with Praedorothia ouachensis (Sigal) of the Praedorothia ouachensis Zone (Valanginian-Hauterivian). The Hauterivian-Aptian interval is characterized by zones of Gavelinella barrerniana, Gaudryina dividens, and Conorotalites aptiensis. During the Albian a world-wide fauna consisting of agglutinated and calcareous foraminifers of the Pseudoclavulina gaultina Zone is established in areas lacking the wide-spread black-shale conditions. The Upper Albian and the Cenomanian are represented by the Gavelinella eenomanica Zone. Some ornamented species of the nodosariids (Citharina, Lenticulina), Gavelinella, Conorotatites, Pleurostomella, Vatvulineria, and Osangularia are of some importance for the biostratigraphy of the Berriasian-Albian interval. The Berriasian to Albian zones introduced for the Tethys and the DSDP by Moullade (1984) could only be of some local importance due to the long stratigraphical range of the foraminiferal species used. In the Indian Ocean an exact stratigraphical age cannot be assigned to the few Neocomian foraminiferal faunas of a cooler sea water (Site 261). These faunas mainly contain primitive agglutinated foraminifers, because in most cases the calcareous tests are dissolved or redeposited. In the Pacific Ocean most of the Berriasian to Aptian microfaunas are of minor biostratigraphical and palaeoecological importance for reasons of poor core recoveries, contaminations or original foraminiferal poverty (black shales). Since the Albian there are somewhat higher-diverse faunas of calcareous and agglutinated foraminifers with index species of the Pseudoclavulina gaultina Zone. As a rule, the boundary Albian/Cenomanian is set by means of planktonic foraminifers because no other foraminifer has its first appearance datum during this interval, except Gavelinella cenornanica. During the Albian very uniform, world-wide foraminiferal faunas without a marked provincialism are obvious.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cores from Sites 689 and 690 of Ocean Drilling Program Leg 113 provide the most continuous Paleocene and Eocene sequence yet recovered by deep sea drilling in the high latitudes of the Southern Ocean. The nannofossil-foraminifer oozes and chalks recovered from Maud Rise at 65°S in the Weddell Sea provide a unique opportunity for biostratigraphic study of extremely high southern latitude carbonate sediments. The presence of warm water index fossils such as the discoasters and species of the Tribrachiatus plexus facilitate the application of commonly used low latitude calcareous nannofossil biostratigraphic zonation schemes for the upper Paleocene and lower Eocene intervals. In the more complete section at Site 690, Okada and Bukry Zones CP1 through CP10 can be identified for the most part with the possible exception of Zone CP3. Several hiatuses are present in the sequence at Site 689 with the most notable being at the Cretaceous/Tertiary and Paleocene/Eocene boundaries. Though not extremely diverse, the assemblage of discoasters in the upper Paleocene and lower Eocene calcareous oozes is indicative of warm, relatively equable climates during that interval. A peak in discoaster diversity in uppermost Paleocene sediments (Zone CP8) corresponds to a negative shift in 5180 values. Associated coccolith assemblages are quite characteristic of high latitudes with abundant Chiasmolithus, Prinsius, and Toweius. Climatic cooling is indicated for middle Eocene sediments by assemblages that contain very abundant Reticulofenestra, lack common discoasters and sphenoliths and are much less diverse overall. Two new taxa are described, Biscutum? neocoronum n. sp. and Amithalithina sigmundii n. gen., n. sp.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biostratigraphic distribution and abundance of middle Miocene to Pleistocene silicoflagellates is documented from Ocean Drilling Program (ODP) Leg 138 Holes 844B, 847B, 848B, 849B, 850B, 85 IB, 852B, and 854B from the eastern Equatorial Pacific Ocean. The silicoflagellates were generally abundant and well preserved and frequently exhibited an unusually large range of variation. The upper Miocene of near-equatorial sites includes an assemblage of Bachmannocena diodon nodosa, which includes a bridge across the width of the basal ring. Stratigraphically below this, at sites within 5° of the equator is a lengthy interval of specimens of Distephanus speculum tenuis, which have a fragile apical structure. Both the intervals of Bachmannocena diodon nodosa plexus and Distephanus speculum tenuis are biostratigraphically useful within 5° of the equator, but are less useful beyond that. An unusual range of variation also is observed for Dictyocha in the Pliocene sediments at about the point where D. perlaevis and D. messanensis appear in the geologic record. This variation may be explained by hybridization between diverging species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Miocene deep-sea sediments from ODP Site 744 (Kerguelen Plateau, southern Indian Ocean) contain abundant and diverse planktonic foraminiferal assemblages. Their analysis led to the identification of the interval between 17.0 and 14.2 Ma as a time of mid-Miocene warmth, which is investigated here in detail. This investigation includes reconstruction of trends in foraminiferal faunal composition and diversity through time, as well as in morphology and coiling direction within Globorotalia praescitula and Globorotalia zealandica plexi. These two large-globorotaliid plexi constitute the most characteristic component of the mid-Miocene foraminiferal faunas at ODP Site 744. Selected benthic (Cibicidoides sp.) and planktonic foraminifera were also analyzed for delta18O and delta13C ratios. Distinctive planktonic assemblages were the basis for identification of three foraminiferal biofacies between 17.0 and 14.2 Ma. The most prominent faunal changes took place between Biofacies 2 and 3 (15.5-15.0 Ma). Six of 11 macroperforate planktonic foraminifera from the >150-µm size fraction occur principally within Biofacies 3. Three other taxa are present throughout the interval analyzed. Moreover, both aforementioned globorotaliid plexi exhibit an increase in morphological diversity between Biofacies 2 and 3. Within the same interval, the G. zealandica plexus shows a switch from random coiling (50% sinistral) to clearly sinistral-dominated coiling. The faunal changes recognized are interpreted as the result of foraminiferal immigrations (increase in faunal diversity) and evolutionary trends (increase in morphological variability and change in coiling mode among the globorotaliid plexi). The stable isotopic results allow paleoenvironmental interpretation of these faunal changes. According to the delta18O values, no significant change in sea-surface temperature occurred between 17.0 and 14.2 Ma. However, the same data suggest an increase in ecological distance between various niches, which is expressed by a rising delta18O gradient recorded between various planktonic taxa upward within the section. This trend suggests niche-space availability as a likely factor responsible for the faunal changes recognized. Changes in the shape and depth of the thermocline, as well as in seasonality and eutrophication are considered as possible causes. Among these an increase in seasonality appears to have been responsible for the increase in species and morphological diversities between 15.5 and 15.0 Ma. The proposed scenario suggests that changes in seasonality may be an important factor driving faunal migrations and evolution. Variable seasonality may also affect the oxygen isotopic record of planktonic foraminiferal taxa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biostratigraphic distribution and abundance of lower Oligocene and Miocene to Pleistocene silicoflagellates are documented from Ocean Drilling Program Leg 183 Holes 1138A and 1140A, on the Kerguelen Plateau. The Distephanus speculum speculum forma pseudofibula plexus is found in the upper Miocene in Hole 1138A, but other important biostratigraphic markers are not available. Diversity and abundance of silicoflagellates vary considerably in Hole 1138A, with silicoflagellates more abundant in the Pliocene and Pleistocene and some intervals of the Miocene barren of silicoflagellates or containing only limited numbers of specimens. The silicoflagellates of Hole 1140A include a new skeletal morphology, described here as Distephanus speculum speculum forma cylindrus. Silicoflagellates were generally abundant throughout the lower and middle Miocene in Hole 1140A.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Upper Miocene foraminiferal nannofossil ooze and chalk from DSDP Hole 552A in the northeast Atlantic Ocean have been closely sampled for biostratigraphic, paleomagnetic, and stable-isotopic studies. Sampling at 10-cm intervals resulted in an uppermost Miocene isotope stratigraphy with a 1000- to 3000-yr. resolution. Covariance in benthic (Planulina wuellerstorfi) and planktonic (Globigerina bulloides) foraminiferal d18O records is taken as evidence for variability in continental ice volume. Our best estimate is that glacial maxima occurred at -5.0 and ~ 5.5 Ma and lasted no more than 20,000 yrs. These events probably lowered sea level by 60 m below the latest Miocene average. There is little oxygen-isotope evidence, however, for a prolonged glaciation during the last 2 m.y. of the late Miocene. High- and low-frequency variability in the d13C record of foraminifers is useful for correlation among North Atlantic DSDP Sites 408, 410, 522, 610, and 611, and for correlation with sites in other oceans. Similar d13C changes are seen in P. wuellerstorfi and G. bulloides, but the amplitude of the signal is always greater in G. bulloides. Variability in d13C common to both species probably reflects variability in the d13C of total CO2 in seawater. Major long-term features in the d13C record include a latest Miocene maximum (P. wuellerstorfi = 1.5 per mil ) in paleomagnetic Chron 7, an abrupt decrease in d13C at -6.2 Ma, and a slight increase at -5.5 Ma. The decrease in d13C at -6.2 Ma, which has been paleomagnetically dated only twice before, occurs in the upper reversed part of Chronozone 6 at Holes 552A and 611C, in excellent agreement with earlier studies. Cycles in d13C with a period of ~ 10 4 yrs. are interpreted as changes in seawater chemistry, which may have resulted from orbitally induced variability in continental biomass. Samples of P. wuellerstorfi younger than 6 Ma from throughout the North Atlantic have d13C near lo, on average ~ l per mil greater than samples of the same age in the Pacific Ocean. Thus, there is no evidence for cessation of North Atlantic Deep Water production resulting from the Messinian "salinity crisis." Biostratigraphic results indicate continuous sedimentation during the late Miocene after about -6.5 Ma at Hole 552A. Nannofossil biostratigraphy is complicated by the scarcity of low-latitude marker species, but middle and late Miocene Zones NN7 through NN11 are recognized. A hiatus is present at -6.5 Ma, on the basis of simultaneous first occurrences of Amaurolithusprimus, Amaurolithus delicatus, Amaurolithus amplificus, and Scyphosphaera globulata. The frequency and duration of older hiatuses increase downsection in Hole 552A, as suggested by calcareous nannofossil biostratigraphy and magnetostratigraphy. Paleomagnetic results at Hole 552A indicate a systematic pattern of inclination changes. Chronozone 6 was readily identified because of its characteristic nannoflora (sequential occurrences of species assigned to the genus Amaurolithus) and the d13C decrease in foraminifers, but its lower reversed interval is condensed. Only the lower normal interval of Chronozone 5 was recognized at Hole 552A; the upper normal interval and the lowest Gilbert sediment are not recognized, owing to low intensity of magnetization and to coring disturbance. Interpreting magnetic reversals below Chronozone 6 was difficult because of hiatuses, but a lower normally magnetized interval is probably Chronozone 7. Correlation between DSDP Hole 552A and other North Atlantic sites is demonstrated using coiling direction changes in the planktonic foraminifer Neogloboquadrina. At most sites this genus changed its coiling preference from dominantly right to dominantly left during the late Miocene. At Hole 552A this event probably occurred about 7 m.y. ago. At the same time, P. wuellerstorfi had maximum d13C values. A similar d13C maximum and coiling change occurred together in Chron 7 at Hole 611C, and at Hole 610E. In sediment younger than -5.5 Ma, the coiling of small Neogloboquadrina species is random, but the larger species N. atlantica retains preferential left coiling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Paleogene calcareous nannofossils from split spoon cores recovered from five wells along the Coastal Plain of New Jersey and Maryland have been analyzed in order to provide onshore information complementary to that derived from the offshore DSDP Site 605 (upper continental rise off New Jersey). Hiatuses are more numerous and of greater extent in the onshore sections, but the major ones correlate well with those noted in the offshore section. At one site at least (Leggett Well), sedimentation may well have been continuous across the Cretaceous/Tertiary boundary, as it is believed to have been at DSDP Site 605. These various correlations are discussed elsewhere in a companion paper (Olsson and Wise, this volume). Important differences in nannofossil assemblages are noted between the onshore (shelf paleoenvironment) and offshore (slope-rise paleoenvironment) sections. Lithostromation simplex, not present offshore, is consistently present onshore and seems to be confined to the Eocene shelf sediments of this region. The same relationship holds for the zonal marker, Rhabdosphaera gladius Locker. The Rhomboaster-Tribrachiatus plexus is more diverse and better preserved in the onshore sections, where the lowermost Eocene Zone CP9 is well represented. Differential preservation is postulated to account for two morphotypes of Tribrachiatus bramlettei (Brönnimann and Stradner). Type A is represented at DSDP Site 605 by individuals with short, stubby arms, but these forms are not present in the equivalent onshore sections. There they are replaced by the Type B morphotypes, which exhibit a similar basic construction but possess much longer, more delicate arms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eocene through Quaternary planktonic foraminifers were identified in cores recovered during Leg 126. Turbidites and volcanic ash beds are intercalated with hemipelagic sediments. Preservation of foraminifers is variable, ranging from excellent to poor and appears to have been affected by fluctuations in the carbonate compensation depth (CCD), depth of burial, changes in bottom water temperature, current velocity, sediment accumulation rates and seafloor topography. Preservation of foraminifers in Quaternary sediments is generally good, however, species abundance varies by a factor of I05-106 and reflects dilution by volcanogenic as well as terrigenous constituents and cannot be used for paleoceanographic reconstructions. In pre-Quaternary deposits planktonic foraminiferal tests frequently exhibit dissolution effects; biostratigraphic zonation and placement of zonal boundaries is difficult owing to hiatuses, dissolution facies, extraneously deposited sediments, and discontinuous coring. The Eocene foraminiferal faunas include specimens of the Globorotalia cerroazulensis plexus, markers of Zone P16 as well as Globigerina senni and Globigerinatheka spp., which became extinct before the end of the Eocene. Six hiatuses and/or dissolution periods, probably reflecting global cooling events and/or changes in oceanic circulation patterns were recorded at Site 792. Recrystallized, poorly preserved, possibly reworked Eocene species (Globigerina senni and Globigerapsis sp.) were recorded in sediments at Site 793.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biostratigraphic distribution and abundance of Eocene to Pleistocene silicoflagellates is documented from Ocean Drilling Program Leg 120 Holes 747A, 748A, 748B, 749B, and 751A on the Central Kerguelen Plateau. Well-preserved silicoflagellates are reported here from the middle Eocene Dictyocha grandis Zone to the Pleistocene Distephanus speculum speculum Zone. Assemblage diversity and abundance is variable, with many intervals either barren of silicoflagellates or containing only limited numbers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Results of a preliminary study of Early Cretaceous dinocyst assemblages from Site 765 on the Argo Abyssal Plain, off northwestern Australia, are presented. The palynological sequence is interpreted in terms of Australian zones and is, in descending order, the late Aptian Diconodinium davidii Zone (Cores 123-765C-33R to -39R), the middle to early Aptian Odontochitina operculata Zone (Cores 123-765C-40R to -49R), the Barremian Muderongia australis Zone (Cores 123-765C-50R to -54R), and the Berriasian lower Batioladinium reticulatum Zone (Core 123-765C-59R). The dating of the sequence as late Aptian to Berriasian on the basis of dinocysts is supported, in part, by data concerning associated foraminiferal, radiolarian, and calcareous nannofossil suites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Late Neogene biostratigraphy of planktonic foraminifers has been investigated from 13 sites cored during Ocean Drilling Program Leg 167 off the coast of California. The planktonic foraminiferal biostratigraphy of six of these sites is presented here at higher stratigraphic resolution for the interval that encompasses the late early Pliocene through the Quaternary (~3.5 Ma to present day). The sites form a transect along the California margin from 31°N to 41°N within the California Current system. A new planktonic foraminiferal zonation has been established largely on evolutionary changes within the Neogloboquadrina plexus, supported by other taxa. A total of eight zones are recognized, most of which are broadly applicable throughout the region, thus providing a biostratigraphic zonation of the sequence at ~0.5-m.y. intervals. The new zonation appears to be unique to the California Current system. The diversity of planktonic foraminiferal assemblages during the late Neogene appears to have remained relatively constant despite large-scale paleoclimatic change. The assemblages are consistently dominated by few taxa that almost always include the neogloboquadrinids and Globigerina bulloides. Low diversity and high dominance of the assemblages favored these and other taxa well adapted to upwelling systems exhibiting high seasonal surface ocean variability. Apparently the oceanographic conditions that favor such assemblages have persisted at least for the duration of the late Neogene (~3.5 Ma to present day). The biostratigraphically important forms have been illustrated with scanning electron micrographs.

Relevância:

10.00% 10.00%

Publicador: