427 resultados para Chlorophyll a, standard deviation
em Publishing Network for Geoscientific
Resumo:
We studied polar and temperate samples of the lichen Cetraria aculeata to investigate whether genetical differences between photobionts are correlated with physiological properties of the lichen holobiont. Net photosynthesis and dark respiration (DR) at different temperatures (from 0 to 30 °C) and photon flux densities (from 0 to 1,200 ?mol/m**2/s) were studied for four populations of Cetraria aculeata. Samples were collected from maritime Antarctica, Svalbard, Germany and Spain, representing different climatic situations. Sequencing of the photobiont showed that the investigated samples fall in the polar and temperate clade described in Fernández-Mendoza et al. (2011, doi:10.1111/j.1365-294X.2010.04993.x). Lichens with photobionts from these clades differ in their temperature optimum for photosynthesis, maximal net photosynthesis, maximal DR and chlorophyll content. Maximal net photosynthesis was much lower in Antarctica and Svalbard than in Germany and Spain. The difference was smaller when rates were expressed by chlorophyll content. The same is true for the temperature optima of polar (11 °C) and temperate (15 and 17 °C) lichens. Our results indicate that lichen mycobionts may adapt or acclimate to local environmental conditions either by selecting algae from regional pools or by regulating algal cell numbers (chlorophyll content) within the thallus.
Resumo:
We evaluated the role of microzooplankton (sensu latto, grazers <500 µm) in determining the fate of phytoplankton production (PP) along a glacier-to-open sea transect in the Greenland subarctic fjord, Godthabfjord. Based on the distribution of size fractionated chlorophyll a (chl a) concentrations we established 4 zones: (1) Fyllas Bank, characterized by deep chl a maxima (ca. 30 to 40 m) consisting of large cells, (2) the mouth and main branch of the fjord, where phytoplankton was relatively homogeneously distributed in the upper 30 m layer, (3) inner waters influenced by glacial melt water and upwelling, with high chl a concentrations (up to 12 µg/l) in the >10 µm fraction within a narrow (2 m) subsurface layer, and (4) the Kapisigdlit branch of the fjord, ice-free, and characterized with a thick and deep chl a maximum layer. Overall, microzooplankton grazing impact on primary production was variable and seldom significant in the Fyllas Bank and mouth of the fjord, quite intensive (up to >100% potential PP consumed daily) in the middle part of the main and Kapisigdlit branches of the fjord, and rather low and unable to control the fast growing phytoplankton population inhabiting the nutrient rich waters in the upwelling area in the vicinity of the glacier. Most of the grazing impact was on the <10 µm phytoplankton fraction, and the major grazers of the system seem to be >20 µm microzooplankton, as deducted from additional dilution experiments removing this size fraction. Overall, little or no export of phytoplankton out of the fjord to the Fyllas Bank can be determined from our data.
Resumo:
Sixty hours of direct measurements of fluorescence were collected from six bowhead whales (Balaena mysticetus) instrumented with fluorometers in Greenland in April 2005 and 2006. The data were used to (1) characterize the three-dimensional spatial pattern of chlorophyll-a (Chl-a) in the water column, (2) to examine the relationships between whale foraging areas and productive zones, and (3) to examine the correlation between whale-derived in situ values of Chl-a and those from concurrent satellite images using the NASA MODIS (Moderate Resolution Imaging Spectroradiometer) EOS-AQUA satellite (MOD21, SeaWifs analogue OC3M and SST MOD37). Bowhead whales traversed 1600 km**2, providing information on diving, Chl-a structure and temperature profiles to depths below 200 m. Feeding dives frequently passed through surface waters ( >50 m) and targeted depths close to the bottom, and whales did not always target patches of high concentrations of Chl-a in the upper 50 m. Five satellite images were available within the periods whales carried fluorometers. Whales traversed 91 pixels collecting on average 761 s (SD 826) of Chl-a samples per pixel (0-136 m). The depth of the Chl-a maximum ranged widely, from 1 to 66 m. Estimates of Chl-a made from the water-leaving radiance measurements using the OC3M algorithm were highly skewed with most samples estimated as <1 mg/m**3 Chl-a, while data collected from whales had a broad distribution with Chl-a reaching >9 mg/m**3. The correlation between the satellite-derived and whale-derived Chl-a maxima was poor, a linear fit explained only 10% of the variance.
Resumo:
Background and Aims: Anthropogenic depletion of stratospheric ozone in Arctic latitudes has resulted in an increase of ultraviolet-B radiation (UV-B) reaching the biosphere. UV-B exposure is known to reduce aboveground biomass and plant height, to increase DNA damage and cause accumulation of UV-absorbing compounds in polar plants. However, many studies on Arctic mosses tended to be inconclusive. The importance of different water availability in influencing UV-B impacts on lower plants in the Arctic has been poorly explored and might partially explain the observed wide variation of responses, given the importance of water in controlling bryophyte physiology. This study aimed to assess the long-term responses of three common sub-Arctic bryophytes to enhanced UV-B radiation (+UV-B) and to elucidate the influence of water supply on those responses. Results: Responses were species specific: H. splendens responded most to +UV-B, with reduction in both annual growth (-22%) and sporophyte production (-44%), together with increased b-carotene, violaxanthin, total chlorophyll and NPQ, and decreased zeaxanthin and de-epoxidation of the xanthophyll cycle pool (DES). Barbilophozia lycopodioides responded less to +UV-B, showing increased b-carotene and sclerophylly and decreased UV-absorbing compounds. Polytrichum commune only showed small morphogenetic changes. No effect of UV-B on bryophyte cover was observed. Water availability had profound effects on bryophyte ecophysiology, and plants showed, in general, lower growth and ETR, together with a higher photoprotection in the drier site. Water availability also influenced bryophyte responses to +UV-B and, in particular, responses were less detectable in the drier site. Conclusions: Impacts of UV-B exposure on Arctic bryophytes were significant, in contrast to modest or absent UV-B effects measured in previous studies. The impacts were more easily detectable in species with high plasticity such as H. splendens and less obvious, or more subtle, under drier conditions. Species biology and water supply greatly influences the impact of UV-B on at least some Arctic bryophytes and could contribute to the wide variation of responses observed previously.