21 resultados para Chloroiodomethane
em Publishing Network for Geoscientific
Resumo:
A number of parameters of biogeochemical interest were monitored along a north-southerly transect (S 43-S 63°) in the Atlantic Sector of the Southern Ocean from the 8th to the 20th of December 1997. Changes in total dissolved inorganic carbon (CT) and total alkalinity (AT) were mostly dependent on temperature and salinity until the ice edge was reached. After this point only a weak correlation was seen between these. Highest mean values of CT and AT were observed in the Winter Ice Edge (WIE) (2195 and 2319 µmol/kg, respectively). Lowest mean AT (2277 µmol/kg) was observed in the Sub-Antarctic Front (SAF), whereas lowest mean CT concentration (2068 µmol/kg) was associated with the Sub-Tropical Front (STF). The pH in situ varied between 8.060 and 8.156 where the highest values were observed in the southern part of the Antarctic Polar Front (APF) and in the Summer Ice Edge (SIE) Region . These peaks were associated with areas of high chlorophyll a (chl a) and tribromomethane values. In the other areas the pH in situ was mainly dependent on hydrography. Bacterial abundance decreased more than one order of magnitude when going from north to south. The decrease appeared to be strongly related to water temperature and there were no elevated abundances at frontal zones. Microphytoplankton dominated in the SAF and APF, whereas the nano- and picoplankton dominated outside these regions. Volatile halogenated compounds were found to vary both with regions, and with daylight. For the iodinated compounds, the highest concentrations were found north of the STF. Brominated hydrocarbons had high concentrations in the STF, but elevated concentrations were also found in the APF and SIE regions. No obvious correlation could be found between the occurrence of individual halocarbons and chl a. On some occasions trichloroethene and tribromomethane related to the presence of nano- and microplankton, respectively.
Resumo:
Little is known regarding the distribution of volatile halogenated organic compounds (halocarbons) in Antarctic waters, and their relation to biophysical variables. During the austral summer (December to January) in 2007-08 halocarbon and pigment concentrations were measured in the Amundsen (100-130ºW) and Ross Sea (158ºW- 160ºE). In addition, halocarbons were determined in air, snow and sea ice. The distribution of halocarbons was influenced to a large extent by sea ice, and to a much lesser extent by pelagic biota. Concentrations of naturally produced halocarbons were elevated in the surface mixed layer in ice covered areas compared to open waters in polynyas and in the bottom waters of the Ross Sea. Higher concentrations of halocarbons were also found in sea ice brine compared to the surface waters. Incubations of snow revealed an additional source of halocarbons. The distribution of halocarbons also varied considerably between the Amundsen and Ross Seas, mainly due to the different oceanographic settings. For iodinated compounds, weak correlations were found with the presence of pigments indicative of Phaeocystis, mainly in the Ross Sea. Saturation anomalies for the surface water and brine (in sea ice) were determined for the two indicator halocarbons bromoform and chloriodomethane. For bromoform, the surface water anomalies varied between -83 and 11%, whereas chloroiodomethane anomalies varied between -6 and 1,200%. The saturation anomalies for brine varied between -56 to 120% for bromoform and 91 to 22,000% for chloroiodomethane, indicating that sea ice could be a possible source both to the atmosphere and the surface waters. Polar waters can have a substantial impact on global halocarbon budgets and need to be included in large-scale assessments.
Resumo:
Halocarbons from oceanic sources contribute to halogens in the troposphere, and can be transported into the stratosphere where they take part in ozone depletion. This paper presents distribution and sources in the equatorial Atlantic from June and July 2011 of the four compounds bromoform (CHBr3), dibromomethane (CH2Br2), methyl iodide (CH3I) and diiodomethane (CH2I2). Enhanced biological production during the Atlantic Cold Tongue (ACT) season, indicated by phytoplankton pigment concentrations, led to elevated concentrations of CHBr3 of up to 44.7 and up to 9.2 pmol/L for CH2Br2 in surface water, which is comparable to other tropical upwelling systems. While both compounds correlated very well with each other in the surface water, CH2Br2 was often more elevated in greater depth than CHBr3, which showed maxima in the vicinity of the deep chlorophyll maximum. The deeper maximum of CH2Br2 indicates an additional source in comparison to CHBr3 or a slower degradation of CH2Br2. Concentrations of CH3I of up to 12.8 pmol/L in the surface water were measured. In contrary to expectations of a predominantly photochemical source in the tropical ocean, its distribution was mostly in agreement with biological parameters, indicating a biological source. CH2I2 was very low in the near surface water with maximum concentrations of only 3.7 pmol/L. CH2I2 showed distinct maxima in deeper waters similar to CH2Br2. For the first time, diapycnal fluxes of the four halocarbons from the upper thermocline into and out of the mixed layer were determined. These fluxes were low in comparison to the halocarbon sea-to-air fluxes. This indicates that despite the observed maximum concentrations at depth, production in the surface mixed layer is the main oceanic source for all four compounds and one of the main driving factors of their emissions into the atmosphere in the ACT-region. The calculated production rates of the compounds in the mixed layer are 34 ± 65 pmol/m**3/h for CHBr3, 10 ± 12 pmol/m**3/h for CH2Br2, 21 ± 24 pmol/m**3/h for CH3I and 384 ± 318 pmol/m**3/h for CH2I2 determined from 13 depth profiles.
Resumo:
The aim of the present study was to evaluate the influence of different light quality, especially ultraviolet radiation (UVR), on the dynamics of volatile halogenated organic compounds (VHOCs) at the sea surface. Short term experiments were conducted with floating gas-tight mesocosms of different optical qualities. Six halocarbons (CH3I, CHCl3, CH2Br2, CH2ClI, CHBr3 and CH2I2), known to be produced by phytoplankton, together with a variety of biological and environmental variables were measured in the coastal southern Baltic Sea and in the Raunefjord (North Sea). These experiments showed that ambient levels of UVR have no significant influence on VHOC dynamics in the natural systems. We attribute it to the low radiation doses that phytoplankton cells receive in a normal turbulent surface mixed layer. The VHOC concentrations were influenced by their production and removal processes, but they were not correlated with biological or environmental parameters investigated. Diatoms were most likely the dominant biogenic source of VHOCs in the Baltic Sea experiment, whereas in the Raunefjord experiment macroalgae probably contributed strongly to the production of VHOCs. The variable stable carbon isotope signatures (d13C values) of bromoform (CHBr3) also indicate that different autotrophic organisms were responsible for CHBr3 production in the two coastal environments. In the Raunefjord, despite strong daily variations in CHBr3 concentration, the carbon isotopic ratio was fairly stable with a mean value of -26 per mil. During the declining spring phytoplankton bloom in the Baltic Sea, the d13C values of CHBr3 were enriched in 13C and showed noticeable diurnal changes (-12 per mil ± 4). These results show that isotope signature analysis is a useful tool to study both the origin and dynamics of VHOCs in natural systems.