37 resultados para Chemistry -- Study and teaching
em Publishing Network for Geoscientific
Resumo:
Ocean surface CO2 levels are increasing in line with rising atmospheric CO2 and could exceed 900 µatm by year 2100, with extremes above 2000 µatm in some coastal habitats. The imminent increase in ocean pCO2 is predicted to have negative consequences for marine fishes, including reduced aerobic performance, but variability among species could be expected. Understanding interspecific responses to ocean acidification is important for predicting the consequences of ocean acidification on communities and ecosystems. In the present study, the effects of exposure to near-future seawater CO2 (860 µatm) on resting (M O2rest) and maximum (M O2max) oxygen consumption rates were determined for three tropical coral reef fish species interlinked through predator-prey relationships: juvenile Pomacentrus moluccensis and Pomacentrus amboinensis, and one of their predators: adult Pseudochromis fuscus. Contrary to predictions, one of the prey species, P. amboinensis, displayed a 28-39% increase in M O2max after both an acute and four-day exposure to near-future CO2 seawater, while maintaining M O2rest. By contrast, the same treatment had no significant effects on M O2rest or M O2max of the other two species. However, acute exposure of P. amboinensis to 1400 and 2400 µatm CO2 resulted in M O2max returning to control values. Overall, the findings suggest that: (1) the metabolic costs of living in a near-future CO2 seawater environment were insignificant for the species examined at rest; (2) the M O2max response of tropical reef species to near-future CO2 seawater can be dependent on the severity of external hypercapnia; and (3) near-future ocean pCO2 may not be detrimental to aerobic scope of all fish species and it may even augment aerobic scope of some species. The present results also highlight that close phylogenetic relatedness and living in the same environment, does not necessarily imply similar physiological responses to near-future CO2.
Resumo:
Due to atmospheric accumulation of anthropogenic CO2 the partial pressure of carbon dioxide (pCO2) in surface seawater increases and the pH decreases. This process known as ocean acidification might have severe effects on marine organisms and ecosystems. The present study addresses the effect of ocean acidification on early developmental stages, the most sensitive stages in life history, of the Atlantic herring (Clupea harengus L.). Eggs of the Atlantic herring were fertilized and incubated in artificially acidified seawater (pCO2 1260, 1859, 2626, 2903, 4635 µatm) and a control treatment (pCO2 480 µatm) until the main hatch of herring larvae occurred. The development of the embryos was monitored daily and newly hatched larvae were sampled to analyze their morphometrics, and their condition by measuring the RNA/DNA ratios. Elevated pCO2 neither affected the embryogenesis nor the hatch rate. Furthermore the results showed no linear relationship betweenpCO2 and total length, dry weight, yolk sac area and otolith area of the newly hatched larvae. For pCO2 and RNA/DNA ratio, however, a significant negative linear relationship was found. The RNA concentration at hatching was reduced at higher pCO2 levels, which could lead to a decreased protein biosynthesis. The results indicate that an increased pCO2 can affect the metabolism of herring embryos negatively. Accordingly, further somatic growth of the larvae could be reduced. This can have consequences for the larval fish, since smaller and slow growing individuals have a lower survival potential due to lower feeding success and increased predation mortality. The regulatory mechanisms necessary to compensate for effects of hypercapnia could therefore lead to lower larval survival. Since the recruitment of fish seems to be determined during the early life stages, future research on the factors influencing these stages are of great importance in fisheries science.
Resumo:
Changes in the seawater carbonate chemistry (ocean acidification) from increasing atmospheric carbon dioxide (CO2 ) concentrations negatively affect many marine calcifying organisms, but may benefit primary producers under dissolved inorganic carbon (DIC) limitation. To improve predictions of the ecological effects of ocean acidification, the net gains and losses between the processes of photosynthesis and calcification need to be studied jointly on physiological and population levels. We studied productivity, respiration, and abundances of the symbiont-bearing foraminifer species Marginopora vertebralis on natural CO2 seeps in Papua New Guinea and conducted additional studies on production and calcification on the Great Barrier Reef (GBR) using artificially enhanced pCO2 . Net oxygen production increased up to 90% with increasing pCO2 ; temperature, light, and pH together explaining 61% of the variance in production. Production increased with increasing light and increasing pCO2 and declined at higher temperatures. Respiration was also significantly elevated (~25%), whereas calcification was reduced (16-39%) at low pH/high pCO2 compared to present-day conditions. In the field, M. vertebralis was absent at three CO2 seep sites at pHTotal levels below ~7.9 (pCO2 ~700 µatm), but it was found in densities of over 1000 m(-2) at all three control sites. The study showed that endosymbiotic algae in foraminifera benefit from increased DIC availability and may be naturally carbon limited. The observed reduction in calcification may have been caused either by increased energy demands for proton pumping (measured as elevated rates of respiration) or by stronger competition for DIC from the more productive symbionts. The net outcome of these two competing processes is that M. vertebralis cannot maintain populations under pCO2 exceeding 700 µatm, thus are likely to be extinct in the next century.
Resumo:
Continuous anthropogenic CO2 emissions to the atmosphere and uptake by the oceans will cause a reduction of seawater pH and saturation state (Omega) of CaCO3 minerals from which marine calcifiers build their shells and skeletons. Sea urchins use the most soluble form of calcium carbonate, high-magnesium calcite, to build their skeleton, spines and grazing apparatus. In order to highlight the effects of increased pCO2 on the test thickness and carbonate elemental composition of juvenile sea urchins and potential differences in their responses linked to the diet, we performed a laboratory experiment on juvenile Paracentrotus lividus, grazing on calcifying (Corallina elongata) and non-calcifying (Cystoseira amentacea, Dictyota dichotoma) macroalgae, under different pH (corresponding to pCO2 values of 390, 550, 750 and 1000 µatm). Results highlighted the importance of the diet in determining sea urchin size irrespectively of the pCO2 level, and the relevance of macroalgal diet in modulating urchin Mg/Ca ratio. The present study provides relevant clues both in terms of the mechanism of mineral incorporation and in terms of bottom-up processes (algal diet) affecting top-down ones (fish predation) in rocky subtidal communities
Resumo:
The present study investigated the combined effects of ocean acidification, temperature, and salinity on growth and test degradation of Ammonia aomoriensis. This species is one of the dominant benthic foraminifera in near-coastal habitats of the southwestern Baltic Sea that can be particularly sensitive to changes in seawater carbonate chemistry. To assess potential responses to ocean acidification and climate change, we performed a fully crossed experiment involving three temperatures (8, 13, and 18°C), three salinities (15, 20, and 25) and four pCO2 levels (566, 1195, 2108, and 3843 µatm) for six weeks. Our results highlight a sensitive response of A. aomoriensis to undersaturated seawater with respect to calcite. The specimens continued to grow and increase their test diameter in treatments with pCO2 <1200 µatm, when Omega calc >1. Growth rates declined when pCO2 exceeded 1200 µatm (Omega calc <1). A significant reduction in test diameter and number of tests due to dissolution was observed below a critical Omega calc of 0.5. Elevated temperature (18°C) led to increased Omega calc, larger test diameter, and lower test degradation. Maximal growth was observed at 18°C. No significant relationship was observed between salinity and test growth. Lowered and undersaturated Omega calc, which results from increasing pCO2 in bottom waters, may cause a significant future decline of the population density of A. aomoriensis in its natural environment. At the same time, this effect might be partially compensated by temperature rise due to global warming.
Resumo:
Seagrasses commonly display carbon-limited photosynthetic rates. Thus, increases in atmospheric pCO2, and consequentially oceanic CO2(aq) concentrations, may prove beneficial. While addressed in mesocosms, these hypotheses have not been tested in the field with manipulative experimentation. This study examines the effects of in situ CO2(aq) enrichment on the structural and chemical characteristics of the tropical seagrass, Thalassia testudinum. CO2(aq) availability was manipulated for 6 months in clear, open-top chambers within a shallow seagrass meadow in the Florida Keys (USA), reproducing forecasts for the year 2100. Structural characteristics (leaf area, leaf growth, shoot mass, and shoot density) were unresponsive to CO2(aq) enrichment. However, leaf nitrogen and phosphorus content declined on average by 11 and 21 %, respectively. Belowground, non-structural carbohydrates increased by 29 %. These results indicate that increased CO2(aq) availability may primarily alter the chemical composition of seagrasses, influencing both the nutrient status and resilience of these systems.
Resumo:
Marine organisms inhabiting environments where pCO2/pH varies naturally are suggested to be relatively resilient to future ocean acidification. To test this hypothesis, the effect of elevated pCO2 was investigated in the articulated coralline red alga Corallina elongata from an intertidal rock pool on the north coast of Brittany (France), where pCO2 naturally varied daily between 70 and 1000 µatm. Metabolism was measured on algae in the laboratory after they had been grown for 3 weeks at pCO2 concentrations of 380, 550, 750 and 1000 µatm. Net and gross primary production, respiration and calcification rates were assessed by measurements of oxygen and total alkalinity fluxes using incubation chambers in the light and dark. Calcite mol % Mg/Ca (mMg/Ca) was analysed in the tips, branches and basal parts of the fronds, as well as in new skeletal structures produced by the algae in the different pCO2 treatments. Respiration, gross primary production and calcification in light and dark were not significantly affected by increased pCO2. Algae grown under elevated pCO2 (550, 750 and 1000 µatm) formed fewer new structures and produced calcite with a lower mMg/Ca ratio relative to those grown under 380 µatm. This study supports the assumption that C. elongata from a tidal pool, where pCO2 fluctuates over diel and seasonal cycles, is relatively robust to elevated pCO2 compared to other recently investigated coralline algae.
Resumo:
In this study we investigated the relations between community calcification of an entire coral reef in the northern Red Sea and annual changes in temperature, aragonite saturation and nutrient loading over a two year period. Summer (April-October) and winter (November-March) average calcification rates varied between 60 ± 20 and 30 ± 20 mmol·m-2·d-1, respectively. In general, calcification increased with temperature and aragonite saturation state of reef water with an apparent effect of nutrients, which is in agreement with most laboratory studies and in situ measurements of single coral growth rates. The calcification rates we measured in the reef correlated remarkably well with precipitation rates of inorganic aragonite calculated for the same temperature and degree of saturation ranges using empirical equations from the literature. This is a very significant finding considering that only a minute portion of reef calcification is inorganic. Hence, these relations could be used to predict the response of coral reefs to ocean acidification and warming.
Resumo:
Gas hydrothermal vents are used as a natural analogue for studying the effects of CO2 leakage from hypothetical shallow marine storage sites on benthic and pelagic systems. This study investigated the interrelationships between planktonic prokaryotes and viruses in the Panarea Islands hydrothermal system (southern Tyrrhenian Sea, Italy), especially their abundance, distribution and diversity. No difference in prokaryotic abundance was shown between high-CO2 and control sites. The community structure displayed differences between fumarolic field and the control, and between surface and bottom waters, the latter likely due to the presence of different water masses. Bacterial assemblages were qualitatively dominated by chemo- and photoautotrophic organisms, able to utilise both CO2 and H2S for their metabolic requirements. From significantly lower virioplankton abundance in the proximity of the exhalative area together with particularly low Virus-to-Prokaryotes Ratio, we inferred a reduced impact on prokaryotic abundance and proliferation. Even if the fate of viruses in this particular condition remains still unknown, we consider that lower viral abundance could reflect in enhancing the energy flow to higher trophic levels, thus largely influencing the overall functioning of the system.
Resumo:
Ocean acidification leads to changes in marine carbonate chemistry that are predicted to cause a decline in future coral reef calcification. Several laboratory and mesocosm experiments have described calcification responses of species and communities to increasing CO2. The few in situ studies on natural coral reefs that have been carried out to date have shown a direct relationship between aragonite saturation state (Omega arag) and net community calcification (Gnet). However, these studies have been performed over a limited range of Omega arag values, where extrapolation outside the observational range is required to predict future changes in coral reef calcification. We measured extreme diurnal variability in carbonate chemistry within a reef flat in the southern Great Barrier Reef, Australia. Omega arag varied between 1.1 and 6.5, thus exceeding the magnitude of change expected this century in open ocean subtropical/tropical waters. The observed variability comes about through biological activity on the reef, where changes to the carbonate chemistry are enhanced at low tide when reef flat waters are isolated from open ocean water. We define a relationship between net community calcification and Omega arag, using our in situ measurements. We find net community calcification to be linearly related to Omega arag, while temperature and nutrients had no significant effect on Gnet. Using our relationship between Gnet and Omega arag, we predict that net community calcification will decline by 55% of its preindustrial value by the end of the century. It is not known at this stage whether exposure to large variability in carbonate chemistry will make reef flat organisms more or less vulnerable to the non-calcifying physiological effects of increasing ocean CO2 and future laboratory studies will need to incorporate this natural variability to address this question.
Resumo:
Among marine calcifiers, shelled pteropods are expected to be particularly sensitive to ocean acidification, generated by the uptake of anthropogenic CO2 by the ocean, and the associated decrease of the seawater saturation state with respect to aragonite (omega aragonite). The few available studies have mostly focused on polar species although pteropods are also important components of temperate and tropical ecosystems. It is also unknown which parameter of the carbonate system controls calcification. Specimens of the temperate Mediterranean species Creseis acicula were maintained under seven different conditions of the carbonate chemistry, obtained by manipulating pH and total alkalinity, with the goal to disentangle the effects of pH and omega aragonite. Respiration, excretion as well as rates of net and gross calcification were not directly affected by a decrease in pH but decreased significantly with a decrease of omega aragonite. The decrease of gross calcification rates is consistent with that reported for polar species. Although the organisms were apparently able to maintain gross calcification rates under slightly undersaturated aragonite conditions, the clear net dissolution signal observed below saturation suggests that they are not able to build a shell in seawater corrosive to aragonite. The decrease in respiration and excretion, and the low O:N molar ratio, could be due to the short time that the organisms were allowed to acclimatize to their new environment.
Resumo:
Risk analyses indicate that more than 90% of the world's reefs will be threatened by climate change and local anthropogenic impacts by the year 2030 under "business-as-usual" climate scenarios. Increasing temperatures and solar radiation cause coral bleaching that has resulted in extensive coral mortality. Increasing carbon dioxide reduces seawater pH, slows coral growth, and may cause loss of reef structure. Management strategies include establishment of marine protected areas with environmental conditions that promote reef resiliency. However, few resilient reefs have been identified, and resiliency factors are poorly defined. Here we characterize the first natural, non-reef coral refuge from thermal stress and ocean acidification and identify resiliency factors for mangrove-coral habitats. We measured diurnal and seasonal variations in temperature, salinity, photosynthetically active radiation (PAR), and seawater chemistry; characterized substrate parameters; and examined water circulation patterns in mangrove communities where scleractinian corals are growing attached to and under mangrove prop roots in Hurricane Hole, St. John, US Virgin Islands. Additionally, we inventoried the coral species and quantified incidences of coral bleaching, mortality, and recovery for two major reef-building corals, Colpophyllia natans and Diploria labyrinthiformis, growing in mangrove-shaded and exposed (unshaded) areas. Over 30 species of scleractinian corals were growing in association with mangroves. Corals were thriving in low-light (more than 70% attenuation of incident PAR) from mangrove shading and at higher temperatures than nearby reef tract corals. A higher percentage of C. natans colonies were living shaded by mangroves, and no shaded colonies were bleached. Fewer D. labyrinthiformis colonies were shaded by mangroves, however more unshaded colonies were bleached. A combination of substrate and habitat heterogeneity, proximity of different habitat types, hydrographic conditions, and biological influences on seawater chemistry generate chemical conditions that buffer against ocean acidification. This previously undocumented refuge for corals provides evidence for adaptation of coastal organisms and ecosystem transition due to recent climate change. Identifying and protecting other natural, non-reef coral refuges is critical for sustaining corals and other reef species into the future.
Resumo:
In the high-nutrient, low-chlorophyll waters of the Gulf of Alaska, microcosm manipulation experiments were used to assess the effect of CO2 on growth and primary production under iron-limited and iron-replete conditions. As expected, iron had a strong effect on growth and photosynthesis. A modest and variable stimulation of growth and biomass production by CO2 (high CO2: 77-122 Pa; low CO2: 11-17 Pa) was observed under both iron-replete and iron-limited conditions, though near the limit of precision of our measurements in slow-growing low-iron experiments. Physiological acclimations responsible for the changes in growth were assessed. Under iron-limited conditions, growth stimulation at high CO2 appeared to result from an increase in photosynthetic efficiency, which we attribute to energy savings from down-regulation of the carbon concentrating mechanisms. In some cases, iron-rich photosynthetic proteins (PsbA, PsaC, and cytochrome b6) were down-regulated at elevated CO2in iron-limited controls. Under iron-replete conditions, there was an increase in growth rate and biomass at high CO2 in some experiments. This increase was unexpectedly supported by reductions in cellular carbon loss, most likely decreased respiration. We speculate that this effect may be due to acclimation to decreased pH rather than high CO2. The variability in responses to CO2 among experiments did not appear to be caused by differences in phytoplankton community structure and may reflect the sensitivity of the net response of phytoplankton to antagonistic effects of the several parameters that co-vary with CO2.