451 resultados para Chemical Methods.
em Publishing Network for Geoscientific
Resumo:
The present volume contains the planktological data collected during the expedition of the "Meteor" to the Indian Ocean in 1964/65. It was the main objective of the expedition to study the up- and downwelling conditioned along the western and eastern coasts of the Arabian Sea by the northeastern monsoon. It is from these areas that the greater part of the data here presented was obtained. A few values from the Red Sea have been added. As the title "Planktological-Chemical Data" implies, it was chiefly with the help of chemical methods that the planktological investigations, with the exception of the particle size analysis and phytoplankton counting conducted optically, were carried out. These investigations were above all devoted to a quantitative survey of particulate matter and plankton, the latter being sampled by water-bottle and net. The zooplankton hauls were taken with the Indian Ocean Standard Net according to the international guidelines laid down for the expedition. As a rule, double catches were made at every station, one sample being intended for laboratory analysis at the Indian Ocean Biological Centre in Ernakulam, South India, and the other for the Institut für Meereskunde in Kiel. In addition to determining the standing stock, the production rate of phytoplankton was measured by the 14C method. These experiments were mainly conducted during the latter half of the expedition. The planktological studies primarily covered the euphotic zone, extending into the underlying water layers up to a depth of 600 m. The investigations were above all directed towards ascertaining the quantity of organic substance, formed by primary production, in its relation to environmental conditions and determining whether or not organic substance is actively transported from the surface into the deeper layers by the periodically migration organisms of the deep scattering layers. Depending on the station time available, a few samples could now and then be taken from deeper layers. The present volume of planktological-chemical data addresses itself to all those concerned processing the extensive material collected during the International Indian Ocean Expedition. As a readily accessible work of reference, it hopes to serve as an aid in the evaluation and interpretation of the expedition results. The complementary ecological data such as temperature, salinity, and oxygen content as well as the figures obtained on abundance and distribution in depth of the nutrients essential for primary production may be found in the volume of physical-chemical data published in Series A of the "Meteor"-Forschungsergebnisse No. 2, 1966 (Dietrich et al., 1966).
Resumo:
Distributions of major and trace elements in ferromanganese nodules, which are buried or exposed on the sea floor and in host sediments, were studied in ten concretion/sediment pairs by various physical and chemical methods. It was established that, in addition to Fe and Mn, a limited number of major and trace elements (P, Ca, Sr, Ba, Mo, Co, Zn, Ni, As, Pb, Sb, Tl, U, W, Y, and Ga) is accumulated with variable degree of intensity (relative to sediments) in the nodules. The maximal content of Mn in the nodules is 100 times higher than in the host sediments, whereas for all other elements listed above these ratios vary from more than one to 10-20. Manganese and, to a lesser extent, Ba and Sr are concentrated in the buried concretions. Other elements are primarily concentrated in concretions exposed on the sea floor. The occurrence mode of the concretions and compositional data on interstitial water suggest that metals in the concretions derive from seawater and suspended particulates, in addition to sediments. Burial of concretions in the sediment pile is accompanied by alteration of their composition, accumulation of Mn (relative to Fe), and loss of several associated metals.
Resumo:
Refractory spinel peridotites were drilled during Leg 125 from two diapiric serpentinite seamounts: Conical Seamount in the Mariana forearc (Sites 778-780) and Torishima Forearc Seamount (Sites 783-784) in the Izu-Ogasawara forearc. Harzburgite is the predominant rock type in the recovered samples, with subordinate dunite; no lherzolite was found. The harzburgite is diopside-free to sparsely diopside-bearing, with modal percentages of diopside that range from 0% to 2%. Spinels in the harzburgites are chrome-rich (Cr/[Cr + Al] = 0.38-0.83; Fe3+/[Fe3+ + Cr + Al] = 0.01-0.07). Olivine and orthopyroxene are magnesian (Mg# = 0.92). Discrete diopsides reveal extreme depletion of light rare earth elements. Primary hornblende is rare. The bulk major-element chemistry shows low average values of TiO2 (trace), Al2O3 (0.55%) and CaO (0.60%), but high Mg# (0.90). These rocks are more depleted than the abyssal peridotites from the mid-oceanic ridge. They are interpreted as residues of extensive partial melting (= 30%), of which the last episode was in the mantle wedge, probably associated with the generation of incipient island-arc magma, including boninite and/or arc-tholeiite. These depleted peridotites probably represent the residues of melting within mantle diapirs that developed within the mantle wedge.
Resumo:
For determining importance, composition, and history of aerosol material accumulation in formation of pelagic clays a study with use of light microscopy and scanning electron microscopy, X-ray diffractometry, and chemical methods has been carried out.
Resumo:
The main objective of this investigation was to study distribution of main chemical constituents and several minor elements in sediment sections drilled during DSDP Legs 56 and 57 in the Japan Trench, in order to infer geochemical features of different lithologic types of sediments, and to find out how the geochemistry is associated with major lithologic constituents, such as terrigenous detrital matter, clay, volcanic ash, and biogenic particles. The geochemical data may help to indicate the nature of the sediments and to interpret sedimentation processes. The analyzed samples seem to be representative of most lithologic units, sub-units, and sediment types drilled at all sites on both legs, except for some shallow-water deposits at Sites 438 and 439. We analyzed bulk-sediment composition by X-ray fluorescence (Kuzmina and Turanskaya) and routine wet-chemical methods (Mikhailov); amorphous SiO2, extracted in a boiling sodium carbonate solution (Analythical Laboratory, P. P. Shirshov Institute of Oceanology); Cr, Zn, Cu, Ni, Co, and Al by atomic absorption (Gordeev); and Sn, Pb, Zn, Cu, Ni, Co, Cr, V, B, and Ag by quantitative spectrographic analyses in both bulk samples and granulometric fractions (Mikhailov). In addition, Fe, Ti, Mn, and CaCO3 have been determined in selected samples by routine wet-chemical methods (Analytical Laboratory, P. P. Shirshov Institute of Oceanology). Murdmaa was responsible for interpretation of the results.
Resumo:
In the 1960s and 1970s, the Kennecott Corporation conducted a number of activities in the evaluation of manganese nodule deposits as well as in their possible hydrometallurgy.
Resumo:
Manganese nodules recovered in the Pacific Ocean by the U. S. Bureau of Mines and by DeepSea Ventures Ltd. are studied for their chemical composition using X microprobe and X-ray fluorescence methods.
Resumo:
Oceanic authigenic carbonates are classified according to origin of the carbonate carbon source using a complex methodology that includes methods of sedimentary petrography, mineralogy, isotope geochemistry, and microbiology. Mg-calcite (protodolomite) and aragonite predominate among the authigenic carbonates. All authigenic carbonates are depleted in 13C and enriched in 18O (in PDB system) that indicates biological fractionation of isotopes during carbonate formation. Obtained results show that authigenic carbonate formation is a biogeochemical (microbial) process, which involves carbon from ancient sedimentary rocks, abiogenic methane, and bicarbonate-ion of hydrothermal fluids into the modern carbon cycle.
Resumo:
Composition of ore minerals in MAR sulflde occurrences related to ultramaflc rocks was studied using methods of mineragraphy, electron microscopy, microprobe analysis, and X-ray analysis. Objects are located at various levels of maturity of sulflde mounds owing to differences in age, duration and degree of activity of the following hydrothermal systems: generally inactive Logatchev-1 field (up to 66.5 ka old), inactive Logatchev-2 field (3.9 ka), and generally active Rainbow field (up to 23 ka). Relative to MAR submarine ore occurrences in the basalt substrate, mineralization in the hydrothermal fields mentioned above is characterized by high contents of Au, Cd, Co, and Ni, along with presence of accessory minerals of Co and Ni. The studied mounds differ in quantitative ratios of major minerals and structural-textural features of ores that suggest their transformation. Ores in the Logatchev-1 field are characterized by the highest Cu content and development of a wide range of multistage contrast exsolution structures of isocubanite and bornite. In the Logatchev-2 field, sphalerite-chalcopyrite and gold-arsenic exsolution structures are present, but isocubanite exsolution structures are less diverse and contrast. The Rainbow field is marked by presence of homogenous isocubanite and the subordinate development of exsolution structures. The authors have identified four new phases in the Cu-Fe-S system. Phases X and Y (close to chalcopyrite and isocubanite, respectively) make up lamellae among isocubanite exsolution products in the Logatchev-1 and Logatchev-2 fields. Phase Y includes homogenous zones in zonal chimneys of the Rainbow field. Phases A and B formed in the orange bornite domain at low-temperature alteration of chalcopyrite in the Logatchev-1 field. Mineral assemblages of the Cu-S system are most abundant and diverse in the Logatchev-1 field, but their development is minimal in the Logatchev-2 field where mainly Cu-poor sulfides of the geerite-covellite series have been identified. Specific features of mineral assemblages mentioned above reflect the maturity grade of sulfide mounds and can serve as indicators of maturity.
Resumo:
Hypersthene-garnet-sillimanite-quartz enclaves were studied in orthopyroxene-plagioclase and orthopyroxene-clinopyroxene crystalline schists and gneisses from shear zones exposed in the Palenyi Island within the Early Proterozoic Belomorian Mobile Belt. Qualitative analysis of mineral assemblages indicates that these rocks were metamorphosed to the granulite facies (approximately 900°C and 10-11 kbar). Oxygen isotopic composition was determined in rock-forming minerals composing zones of the enclaves of various mineral and chemical composition. Closure temperatures of the isotopic systems obtained by methods of oxygen isotopic thermometry are close to values obtained with mineralogical geothermometers (garnet-orthopyroxene and garnet-biotite) and correspond to the high-temperature granulite facies (860-900°C). Identified systematic variations in d18O values were determined in the same minerals from zones of different mineral composition. Inasmuch as these zones are practically in contact with one another, these variations in d18O cannot be explained by primary isotopic heterogeneity of the protolith. Model calculations of the extent and trend of d18O variations in minerals suggest that fluid-rock interaction at various integral fluid/rock ratios in discrete zones was the only mechanism that could generate the zoning. This demonstrates that focused fluid flux could occur in lower crustal shear zones. Preservation of high-temperature isotopic equilibria of minerals testifies that the episode of fluid activity at the peak of metamorphism was very brief.
Resumo:
A technique of zooplankton net sampling at night in the Kandalaksha and Dvinskii Bays and during the full tide in the Onezhskii Bay of the White Sea allowed us to obtain "clean" samples without considerable admixtures of terrigenous particulates. Absence of elements-indicators of the terrigenous particulates (Al, Ti, and Zr) in the EDX spectra allows to conclude that ash composition of tested samples is defined by constitutional elements comprising organic matter and integument (chitin, shells) of plankton organisms. A quantitative assessment of accumulation of ca. 40 chemical elements by zooplankton based on a complex of modern physical methods of analysis is presented. Values of the coefficient of the biological accumulation of the elements (Kb) calculated for organic matter and the enrichment factors (EF) relative to Clarke concentrations in shale are in general determined by mobility of the chemical elements in aqueous solution, which is confirmed by calculated chemical speciation of the elements in the inorganic subsystem of surface waters of Onezhskii Bay.
Resumo:
New data on microstructures and mineral and chemical compositions of ferromanganese crusts sampled from the western slope of the Kuril Island Arc in the Sea of Okhotsk during cruises of R/V Vulkanolog are discussed. The study of the crusts using analytical electron microscopy methods revealed that their manganese phase is represented by vernadite, Fe-vernadite, todorokite, asbolane, and asbolane-buserite, while iron phase consists of hematite, hydrohematite, ferroxyhite, and magnetite. Lithic mineral assemblage includes apatite, quartz, epidote, and montmorillonite. According to chemical analysis most of the crusts contain significant part of volcanogenic and hydrothermal material. It is evident from elevated values of Mn/Fe and (Mn+Fe)/Ti ratios, low concentrations of some trace elements, and positive Eu anomaly.
Resumo:
Data from sections across the Eurasian Basin of the Arctic Ocean occupied by the German Research Vessel Polarstern in 1987 and by the Swedish icebreaker Oden in 1991 are used to derive information on the freshwater balance of the Arctic Ocean halocline and on the sources of the deep waters of the Nansen, Amundsen and Makarov basins. Salinity, d18O and mass balances allow separation of the river-runoff and the sea-ice meltwater fractions contained in the Arctic halocline. This provides the basis for tracking the river-runoff signal from the shelf seas across the central Arctic Ocean to Fram Strait. The halocline has to be divided into at least three lateral regimes: the southern Nansen Basin with net sea-ice melting, the northern Nansen Basin and Amundsen Basin with net sea-ice formation and increasing river-runoff fractions, and the Canadian Basin with minimum sea-ice meltwater and maximum river-runoff fractions and water of Pacific origin. In the Canadian Basin, silicate is used as a tracer to identify Pacific water entering through Bering Strait and an attempt is made to quantify its influence on the halocline waters of the Canadian Basin. For this purpose literature data from the CESAR and LOREX ice camps are used. Based on mass balances and depending on the value of precipitation over the area of the Arctic Ocean the average mean residence time of the river-runoff fraction contained in the Arctic Ocean halocline is determined to be about 14 or 11 years. Water column inventories of river-runoff and sea-ice meltwater are calculated for a section just north of Fram Strait and implications for the ice export rate through Fram Strait are discussed. Salinity, tritium, 3He and the d18O ratio of halocline waters sampled during the 1987 Polarstern cruise to the Nansen Basin are used to estimate the mean residence time of the river-runoff component in the halocline and on the shelves of the Arctic Ocean. These estimates are done by comparing ages of the halocline waters based on a combination of tracers yielding different time information: the tritium 'vintage' age which records the time that has passed since the river-runoff entered the shelf and the tritium/3He age which reflects the time since the shelf waters left the shelf. The difference between the ages determined by these two methods is about 3 to 6 years. Correction for the initial tritium/3He age of the shelf waters (about 0.5 to 1.5 years) yields a mean residence time of the river-runoff on the shelves of about 3.5 ± 2 years. Comparison of the 18O/16O ratios of shelf water, Atlantic water and the deep waters of the Arctic Ocean indicate that the sources of the deep and bottom waters of the Eurasian Basin are located in the Barents and Kara seas.
Resumo:
During underwater photography and sampling of the rift valley bottom in the axial part of the East Pacific Rise, where water transparency is reduced due to hydrothermal input, ore manifestations have been found. The bottom is covered by them as by a jacket on both sides from the EPR axial zone. However, exposed pillow-lavas and clumpy blocks in rift ledges are covered by a thin metal-bearing film. It is supposed that sedimentation results mainly from hydrothermal input of dissolved chemical elements in seawater, their transformation on the geochemical barrier, and subsequent deposition as particulates. Contents of ore components in metalliferous sediments have been measured by atomic-absorption and X-ray radiometry methods. Sediment age has been determined as Middle Pleistocene - Holocene. Maximal hydrothermal activity was at the beginning of Early Holocene, about 10 Ka. A smoker has been found on the western slope of the rift valley.